搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三唑和环戊烯苯并菲衍生物盘状液晶分子的电荷传输性质

杨琼芬 聂汉 陈自然 李权 赵可清

引用本文:
Citation:

三唑和环戊烯苯并菲衍生物盘状液晶分子的电荷传输性质

杨琼芬, 聂汉, 陈自然, 李权, 赵可清

Charge transport properties of triazole or cyclopentene triphenylene derivative discogen molecules

Yang Qiong-Fen, Nie Han, Chen Zi-Ran, Li Quan, Zhao Ke-Qing
PDF
导出引用
  • 电荷传输是有机电子材料的重要性质. 根据Marcus理论模型, 电荷传输为电子-电子相互作用和电子-声子相互作用过程, 电子-声子相互作用耦合强度越大, 重组能越大, 不利于电荷传输. 电子-电子相互作用耦合强度越大, 电荷传输矩阵元越大, 有利于电荷传输. 对含1, 2, 4-三唑、1, 2, 3-三唑和1, 2, 3-三氮-2, 3环戊烯边链的苯并菲衍生物分子的电荷传输性质进行理论研究. 结果表明, 含1, 2, 3-三唑的苯并菲衍生物分子的空穴传输速率和电子传输速率相当, 速率常数为21012s-1. 含1, 2, 4-三唑的苯并菲衍生物分子的空穴传输速率常数为51012s-1, 约为电子传输速率常数的10倍. 含1, 2, 3-三氮-2, 3环戊烯的苯并菲衍生物分子的电子传输速率常数为31012s-1, 约为空穴传输速率常数的10倍. 目标分子的空穴传输或电子传输速率主要受传输矩阵元的影响, 即电子-电子相互作用耦合强度的大小决定传输速率的变化.
    Charge transport is one of the most important properties in organic electronic materials. On the basis of Marcus theory, the charge-transfer is the course of electron-electron interaction and electron-phonon interaction, and the greater the electron-phonon interaction coupling strength, the greater the reorganization energy is, which is not conducive to the charge transport. The greater the electron-electron interaction coupling strength, the greater the charge transfer matrix element is, which is beneficial to the charge transport. Charge transport properties of triphenylene derivative discogens molecules with a 1, 2, 3-triazole, 1, 2, 4-triazole or 1, 2, 3-trinitrogen-2, 3- cyclopenten side chain are investigated computationally. The results show that the electronic mobility and the hole mobility of 1, 2, 3-triazole triphenylene derivative are nearly equal, and the rate constant is 21012s-1. The hole transfer rate constant of the 1, 2, 4-triazole triphenylene derivative molecules is 51012s-1, which is ten times higer than the electronic transfer rate constant. Triphenylene containing 4, 5-dihydro-1, 2, 3-triazole has better electronic mobility but smaller hole mobility than triphenylene discogens containing 1, 2, 3-triazole or 1, 2, 4-triazole, and the electronic mobility is 31012s-1, which is equal to ten times of the hole mobility. The hole transfer or electron transfer rate of the target molecules is affected mainly by the transfer matrix element, in other words, electron-electron interaction coupling strength determines the magnitude of mobility rate variation.
      通信作者: 李权, liquan6688@163.com
    • 基金项目: 国家自然科学基金(批准号:50973076)、四川省科技计划项目(批准号:2010JY0041)和四川师范大学科研基金(批准号:09ZDL03,025156)资助的课题.
      Corresponding author: Li Quan, liquan6688@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50973076), the Science and Technology Program of Sichuan Province, China (Grant No.2010JY0041) and the Sichuan Normal University Research Grant, China (Grant Nos. 09ZDL03, 025156).
    [1]

    Schmidt-Mende L, Fechtenk? tter A, Müllen K, Moons E, Friend R H, MacKenzie J D 2001 Science 293 1119

    [2]

    Sergeyev S, Pisula W, Geerts Y H 2007 Chem. Soc. Rev. 36 1902

    [3]

    Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M 2007 Angew. Chem. Int. Ed. 46 4832

    [4]

    Feng X,Marcon V, PisulaW, HansenMR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K 2009 Nat. Mater. 8 421

    [5]

    Bai Y F, Zhao K Q, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 60

    [6]

    Ji H, Zhao K Q, Yu WH,Wang B Q, Hu P 2009 Sci. China Ser. B Chem. 52 975

    [7]

    Kumar S 2004 Liq. Cryst. 31 1037

    [8]

    Chen J R, Cai J, Xu B Y, Li Q, Zhao K Q 2008 Chin. J. Chem. 26 2292

    [9]

    Chen J R, Huang C R, Xu B Y, Li Q, Zhao K Q 2009 Sci. China Ser B Chem. 52 1192

    [10]

    Sun D G, Ding F J, Zhao K Q 2008 Acta Chim. Sinica 66 738 (in Chinese)[孙定光, 丁涪江, 赵可清 2008 化学学报 66 738]

    [11]

    Conte G, Ely F, Gallardo H 2005 Liq. Cryst. 32 1213

    [12]

    Gallardo H, Bortoluzzi A J, Santos D M P O 2008 Liq. Cryst. 35 719

    [13]

    Yu W H, Nie S C, Bai Y F, Jing Y, Wang B Q, Hu P, Zhao K Q 2010 Sci. China Ser B Chem. 53 1134

    [14]

    Zhao K Q, Bai Y F, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 819

    [15]

    Yang Y, Zhao K Q, Yu W H, Wang B Q, Hu P 2010 Key Eng. Mater. 428–429 135

    [16]

    Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J 2004 J. Am. Chem. Soc. 126 3271

    [17]

    Cornil J, Lemaur V, Calbert J P, Bredas J L 2002 Adv. Mater. 14 726

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann Jr R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gon-zalez C, Head-Gordon M, Replogle E S, Pople G A 2003 Gaussian 03, Revision B. 05, Gaussian, Inc. Pittsburgh PA

  • [1]

    Schmidt-Mende L, Fechtenk? tter A, Müllen K, Moons E, Friend R H, MacKenzie J D 2001 Science 293 1119

    [2]

    Sergeyev S, Pisula W, Geerts Y H 2007 Chem. Soc. Rev. 36 1902

    [3]

    Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M 2007 Angew. Chem. Int. Ed. 46 4832

    [4]

    Feng X,Marcon V, PisulaW, HansenMR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K 2009 Nat. Mater. 8 421

    [5]

    Bai Y F, Zhao K Q, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 60

    [6]

    Ji H, Zhao K Q, Yu WH,Wang B Q, Hu P 2009 Sci. China Ser. B Chem. 52 975

    [7]

    Kumar S 2004 Liq. Cryst. 31 1037

    [8]

    Chen J R, Cai J, Xu B Y, Li Q, Zhao K Q 2008 Chin. J. Chem. 26 2292

    [9]

    Chen J R, Huang C R, Xu B Y, Li Q, Zhao K Q 2009 Sci. China Ser B Chem. 52 1192

    [10]

    Sun D G, Ding F J, Zhao K Q 2008 Acta Chim. Sinica 66 738 (in Chinese)[孙定光, 丁涪江, 赵可清 2008 化学学报 66 738]

    [11]

    Conte G, Ely F, Gallardo H 2005 Liq. Cryst. 32 1213

    [12]

    Gallardo H, Bortoluzzi A J, Santos D M P O 2008 Liq. Cryst. 35 719

    [13]

    Yu W H, Nie S C, Bai Y F, Jing Y, Wang B Q, Hu P, Zhao K Q 2010 Sci. China Ser B Chem. 53 1134

    [14]

    Zhao K Q, Bai Y F, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 819

    [15]

    Yang Y, Zhao K Q, Yu W H, Wang B Q, Hu P 2010 Key Eng. Mater. 428–429 135

    [16]

    Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J 2004 J. Am. Chem. Soc. 126 3271

    [17]

    Cornil J, Lemaur V, Calbert J P, Bredas J L 2002 Adv. Mater. 14 726

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann Jr R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gon-zalez C, Head-Gordon M, Replogle E S, Pople G A 2003 Gaussian 03, Revision B. 05, Gaussian, Inc. Pittsburgh PA

  • [1] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制.  , 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器.  , 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [3] 周正, 黄少云. 串联耦合三量子点的电荷稳态研究.  , 2023, 72(1): 017301. doi: 10.7498/aps.72.20221512
    [4] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理.  , 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [5] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性.  , 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [6] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响.  , 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [7] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势.  , 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [8] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响.  , 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [9] 史良马, 周明健, 张晴晴, 张宏彬. 三维介观超导环的涡旋结构.  , 2016, 65(4): 047501. doi: 10.7498/aps.65.047501
    [10] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质.  , 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [11] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究.  , 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [12] 李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊. 基于斜三角开口对环的宽带低耗左手材料.  , 2012, 61(15): 154102. doi: 10.7498/aps.61.154102
    [13] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量.  , 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [14] 吴世海, 胡明亮, 李季, 惠小强. 用约瑟夫森电荷比特系统实现一种特殊量子态的传输.  , 2011, 60(1): 010302. doi: 10.7498/aps.60.010302
    [15] 刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究.  , 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [16] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定.  , 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [17] 胡競丹, 蔡 静, 陈俊蓉, 李 权, 赵可清. 六氮杂苯并菲及其衍生物电荷传输性质的理论研究.  , 2008, 57(9): 5464-5468. doi: 10.7498/aps.57.5464
    [18] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究.  , 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [19] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究.  , 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [20] 苏国林, 任雪光, 张书锋, 宁传刚, 周 晖, 李 彬, 黄 峰, 李桂琴, 邓景康. 环戊烯分子内价轨道1a′的电子动量谱学研究.  , 2005, 54(9): 4108-4112. doi: 10.7498/aps.54.4108
计量
  • 文章访问数:  6425
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-14
  • 修回日期:  2011-07-06
  • 刊出日期:  2012-03-05

/

返回文章
返回
Baidu
map