-
非极性方向生长的ZnO基多量子阱消除了量子限域Stark效应, 可以提高光电器件的发光效率. 据此我们采用脉冲激光沉积方法(PLD)在r面蓝宝石衬底上生长了高质量的a面(1120)单一取向非极性Zn(Mn,Na)O薄膜. X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、Hall测试、X射线光电子能谱(XPS)等测试结果表明: 衬底温度和生长气压对Zn(Mn,Na)O薄膜的非极性生长影响很大, 在600℃和0.02 Pa条件下实现了Mn-Na共掺, 得到了高结晶质量并具有良好光电性能的非极性Zn(Mn,Na)O薄膜. 此外, 我们还利用超导量子干涉仪(SQUID)研究了Zn(Mn,Na)O薄膜的生长取向对其室温铁磁性能的影响规律, 并对引起磁性变化的机理进行了讨论.
-
关键词:
- Zn(Mn,Na)O薄膜 /
- 非极性生长 /
- 室温铁磁性
Nonpolar Zn(Mn, Na)O thin films with orientation (a-plane) have been successfully grown on r-plane sapphire substrates by pulsed laser deposition (PLD) through a Mn-Na codoping route. The X-ray diffraction(XRD), field-emission on scanning electron micorscope(FE-SEM), Hall-effect and X-ray photoelectron spectroscopy(XPS) measurements show that substrate temperature and work pressure have a significant influence on the nonpolar growth of Zn(Mn,Na)O thin films. The films prepared under a work pressure of 0.02Pa and substrate temperature of 600 ℃ could achieve a high quality crystallite with fine optical and electrical properties through Mn-Na codoping. Moreover, the influence of the growth orientation on room temperature ferromagnetism (RTFM) of the thin films is investigated by superconducting quantum interference device(SQUID), and the possible mechanism involving the origin of RTFM in the Zn(Mn,Na)O films is discussed as well.[1] 陈长乐, 高国棉, 杨晓光, 袁孝, 宋宙模 2006 55 3133]
[2] Mang A, Reimann K, Rübenacke St 1995 Solid State Commun. 94251
[3] Reynolds D C, Look D C, Jogai B 1996 Solid State Commun. 99873
[4] Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, ShenMY, GotoT 1997 Appl. Phys. Lett. 70 2230
[5] Look D C 2001 Mater. Sci. Eng. B 80 383
[6] Özgür Ü , Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S,Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301
[7] Wetzel C, Zhu M, Senawiratne J, Detchprohm T, Persans P D, LiuL, Preble E A, Hanser D 2008 J. Cryst. Growth 310 3987
[8] Zhang B P, Liu B L, Yu J Z, Wang Q M 2007 Appl. Phys. Lett. 90132113
[9] Tanaka A, Yanagitani T, Matsukawa M, Watanabe Y 2008 IEEETrans. Ultrason. Ferroelectr. Freq. Control 55 2709
[10] Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, RamsteinerM, Reiche M, Ploog K H 2000 Nature 406 865
[11] Chauveau J M, Morhain C, Lo B, Vinter B, Vennegues P, Laugt M,Buell D, Tesseire-Doninelli M, Neu G 2007 Appl. Phys. A Mater.Sci. Process. 88 65
[12] Wei X H, Li Y R, Jie W J, Tang J L, Zeng H Z, Huang W, ZhangY, Zhu J 2007 J. Phys. D Appl. Phys. 40 7502
[13] Chou M M C, Hang D R, Wang S C, Chen C L, Lee C Y 2010 J.Cryst. Growth 312 1170
[14] Kashiwaba Y, Abe T, Nakagawa A, Endo H, Niikura I, KashiwabaY 2009 Phys. Status Solidi A Appl. Mat. 206 944
[15] Chauveau J M, Teisseire M, Kim-Chauveau H, Deparis C,Morhain C, Vinter B 2010 Appl. Phys. Lett. 97 081903
[16] Chou M M C, Chang L W, Hang D R, Chen C L, Chang D S, LiC A 2009 Cryst. Growth Des. 9 2073
[17] Zhou J H, Zhou S M, Huang T H, Lin H, Li S Z, Zou J, Wang J,Han P, Zhang R 2008 Acta Phys. Sin. 57 430 (in Chinese) [周健华, 周圣明, 黄涛华, 林辉, 李抒智, 邹军, 王军, 韩平, 张荣 2008 57 0430]
[18] Kajikawa Y 2006 J. Cryst. Growth 289 387
[19] Phan T L, Vincent R, Phan M H, Dan N H, Yu S C 2007 SolidState Commun. 144 134
[20] Ye Z Z, Zhang L Q, Lu B, Lu J G, He H P, Zhang Y Z, Zhu L P,Huang J Y, Jin Y Z, Zhang J, Jiang J, Wu K W, Huang J, Xie Z (inpress)
[21] Gu H, Jiang Y Z, Xu Y B, Yan M 2011 Appl. Phys. Lett. 98012502
[22] Zhao Y Z, Chen C L, Gao G M, Yang X G, Yuan X, Song Z M2006 Acta Phys. Sin. 55 3133 (in Chinese) [赵跃智,
[23] Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L, Mu R 2006 Appl.Phys. Lett. 88 242502
[24] Biesinger M C, Paynec B P, Grosvenord A P, Laua L W M, GersonbA R, Smart R S C 2011 Appl. Surf. Sci. 257 2721
[25] Chuang T J, Brundle C R, Rice D W 1976 Surf. Sci. 59 413
[26] Zhang L Q, Ye Z Z, Lu J G, Zhang Y Z, Zhu L P, Zhang J, Yang D,Wu K W, Huang J, Xie Z 2010 J. Phys. D Appl. Phys. 43 015001
[27] Yang L W, Wu X L, Huang G S, Qiu T, Yang Y M 2005 J. Appl.Phys. 97 014308
[28] Srikant V, Clarke D R 1997 J. Appl. Phys. 81 6357
[29] Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, SvenssonB G, Yakimova R 2006 Superlattices Microstruct. 39 275
[30] Maiti U N, Ghosh P K, Nandy S, Chattopadhyay K K 2007 PhysicaB 387 103
[31] Mofor A C, El-Shaer A, Bakin A, Waag A, Ahlers H, SiegnerU, Sievers S, Albrecht M, Schoch W, Izyumskaya N, Avrutin V,Sorokin S, Ivanov S, Stoimenos J 2005 Appl. Phys. Lett. 87062501
[32] Sato K, Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17367
[33] Yang Z, Liu J L, Biasini M, Beyermann P 2008 Appl. Phys. Lett.92 042111
[34] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4173036701-7
-
[1] 陈长乐, 高国棉, 杨晓光, 袁孝, 宋宙模 2006 55 3133]
[2] Mang A, Reimann K, Rübenacke St 1995 Solid State Commun. 94251
[3] Reynolds D C, Look D C, Jogai B 1996 Solid State Commun. 99873
[4] Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, ShenMY, GotoT 1997 Appl. Phys. Lett. 70 2230
[5] Look D C 2001 Mater. Sci. Eng. B 80 383
[6] Özgür Ü , Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S,Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301
[7] Wetzel C, Zhu M, Senawiratne J, Detchprohm T, Persans P D, LiuL, Preble E A, Hanser D 2008 J. Cryst. Growth 310 3987
[8] Zhang B P, Liu B L, Yu J Z, Wang Q M 2007 Appl. Phys. Lett. 90132113
[9] Tanaka A, Yanagitani T, Matsukawa M, Watanabe Y 2008 IEEETrans. Ultrason. Ferroelectr. Freq. Control 55 2709
[10] Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, RamsteinerM, Reiche M, Ploog K H 2000 Nature 406 865
[11] Chauveau J M, Morhain C, Lo B, Vinter B, Vennegues P, Laugt M,Buell D, Tesseire-Doninelli M, Neu G 2007 Appl. Phys. A Mater.Sci. Process. 88 65
[12] Wei X H, Li Y R, Jie W J, Tang J L, Zeng H Z, Huang W, ZhangY, Zhu J 2007 J. Phys. D Appl. Phys. 40 7502
[13] Chou M M C, Hang D R, Wang S C, Chen C L, Lee C Y 2010 J.Cryst. Growth 312 1170
[14] Kashiwaba Y, Abe T, Nakagawa A, Endo H, Niikura I, KashiwabaY 2009 Phys. Status Solidi A Appl. Mat. 206 944
[15] Chauveau J M, Teisseire M, Kim-Chauveau H, Deparis C,Morhain C, Vinter B 2010 Appl. Phys. Lett. 97 081903
[16] Chou M M C, Chang L W, Hang D R, Chen C L, Chang D S, LiC A 2009 Cryst. Growth Des. 9 2073
[17] Zhou J H, Zhou S M, Huang T H, Lin H, Li S Z, Zou J, Wang J,Han P, Zhang R 2008 Acta Phys. Sin. 57 430 (in Chinese) [周健华, 周圣明, 黄涛华, 林辉, 李抒智, 邹军, 王军, 韩平, 张荣 2008 57 0430]
[18] Kajikawa Y 2006 J. Cryst. Growth 289 387
[19] Phan T L, Vincent R, Phan M H, Dan N H, Yu S C 2007 SolidState Commun. 144 134
[20] Ye Z Z, Zhang L Q, Lu B, Lu J G, He H P, Zhang Y Z, Zhu L P,Huang J Y, Jin Y Z, Zhang J, Jiang J, Wu K W, Huang J, Xie Z (inpress)
[21] Gu H, Jiang Y Z, Xu Y B, Yan M 2011 Appl. Phys. Lett. 98012502
[22] Zhao Y Z, Chen C L, Gao G M, Yang X G, Yuan X, Song Z M2006 Acta Phys. Sin. 55 3133 (in Chinese) [赵跃智,
[23] Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L, Mu R 2006 Appl.Phys. Lett. 88 242502
[24] Biesinger M C, Paynec B P, Grosvenord A P, Laua L W M, GersonbA R, Smart R S C 2011 Appl. Surf. Sci. 257 2721
[25] Chuang T J, Brundle C R, Rice D W 1976 Surf. Sci. 59 413
[26] Zhang L Q, Ye Z Z, Lu J G, Zhang Y Z, Zhu L P, Zhang J, Yang D,Wu K W, Huang J, Xie Z 2010 J. Phys. D Appl. Phys. 43 015001
[27] Yang L W, Wu X L, Huang G S, Qiu T, Yang Y M 2005 J. Appl.Phys. 97 014308
[28] Srikant V, Clarke D R 1997 J. Appl. Phys. 81 6357
[29] Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, SvenssonB G, Yakimova R 2006 Superlattices Microstruct. 39 275
[30] Maiti U N, Ghosh P K, Nandy S, Chattopadhyay K K 2007 PhysicaB 387 103
[31] Mofor A C, El-Shaer A, Bakin A, Waag A, Ahlers H, SiegnerU, Sievers S, Albrecht M, Schoch W, Izyumskaya N, Avrutin V,Sorokin S, Ivanov S, Stoimenos J 2005 Appl. Phys. Lett. 87062501
[32] Sato K, Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17367
[33] Yang Z, Liu J L, Biasini M, Beyermann P 2008 Appl. Phys. Lett.92 042111
[34] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4173036701-7
计量
- 文章访问数: 6565
- PDF下载量: 606
- 被引次数: 0