搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态

闫智辉 贾晓军 谢常德 彭堃墀

引用本文:
Citation:

利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态

闫智辉, 贾晓军, 谢常德, 彭堃墀

Continuous-variable three-color tripartite entangled state generated by a non-degenerate optical parameter oscillator

Yan Zhi-Hui, Jia Xiao-Jun, Xie Chang-De, Peng Kun-Chi
PDF
导出引用
  • 利用半经典理论方法计算了运转于阈值以上的非简并光学参量振荡腔输出信号场、闲置场及反射抽运场的关联特性. 根据 van Loock 等提出的连续变量多组分纠缠判据, 计算结果表明, 常温下这三个光场的正交振幅分量与正交位相分量之间存在三组分量子关联, 得到了三色三组分纠缠态光场. 数值计算了关联噪声对参量振荡腔物理参数的依赖关系, 找出了产生三色三组分纠缠态产生的最佳运转条件, 为连续变量多组分纠缠态光场产生系统的设计提供了直接参考.
    The quantum correlations between the output signal, the output idler and the reflected pump fields generated by non-degenerate optical parametric oscillator operating above the oscillation threshold are theoretically calculated with the semi-classical formulae. According to the multipartite entanglement criteria for the continuous variables, proposed by P. van Loock and A. Furusawa, the calculated results prove the existence of the quantum correlations between the amplitude and the phase quadrature for the three optical fields, i. e. they form a tripartite entangled state. We numerically calculate the dependence of the entanglement on the physical parameters of the optical oscillator and find the optimum operating conditions of the oscillator to produce the three-color tripartite entangled state, which provide the direct references for the design of the continuous variable multipartite entanglement generation systems.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB923103)、国家自然科学基金创新研究群体科学基金(批准号:60821004)、国家自然科学基金(批准号: 60736040,11074157) 和山西省高等学校优秀青年学术带头人支持计划资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB923103), the Science Fund for Creative Research Group of the National Natural Science Foundation of China (Grant No. 60821004), the National Natural Science Foundation of China (Grants Nos. 60736040, 11074157), and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China.
    [1]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [2]

    Shor P W, Siam J 1997 Computer 26 1484

    [3]

    Furusawa A, S?rensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [4]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904

    [5]

    Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503

    [6]

    Kimble H J 2008 Nature 453 1023

    [7]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903

    [8]

    Su X L, Tan A H, Jia X J, Zhang J, Xie C D, Peng K C 2007 Phys. Rev. Lett. 98 070502

    [9]

    Tan A H, Wang Y, Jin X L, Su X L, Jia X J, Zhang J, Xie C D, Peng K C 2008 Phys. Rev. A 78 013828

    [10]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [11]

    Yoshikawa J, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501

    [12]

    Wang Y, Su X L, Shen H, Tan A H, Xie C D, Peng K C 2010 Phys. Rev. A 81 022311

    [13]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482

    [14]

    Dong R, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G, Andersen U L 2008 Nature Phys. 4 919

    [15]

    Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731

    [16]

    Pan Q, Wang H, Zhang Y, Su H, Xie C D, Peng K C, Yu Z G, Lu Q M 1998 Acta Phys. Sin. 47 1625 (in Chinese) [潘庆, 王海, 张云, 苏红, 谢常德, 彭堃墀, 于正刚, 路庆明 1998 47 1625]

    [17]

    Li X Y, Jing J T, Zhang J, Pan Q, Xie C D, Peng K C 2002 Acta Phys. Sin. 51 966 (in Chinese) [李小英, 荆杰泰, 张靖, 潘庆, 谢常德, 彭堃墀 2002 51 966]

    [18]

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 2717 (in Chinese) [贾晓军, 苏晓龙, 潘 庆, 谢常德, 彭堃墀 2005 54 2717]

    [19]

    Zhao C Y, Tan W H 2006 J. Opt. Soc. Am. B 23 2174

    [20]

    Zhao C Y, Tan W H 2007 J. Mod. Opt. 54 97

    [21]

    Heidmann A, Horowicz R J, Reynaud S, Giacobino E, Fabre C, Camy G 1987 Phys. Rev. Lett. 59 2555

    [22]

    Villar A S, Cruz L S, Cassemiro K N, Martinelli M, Nussenzveig P 2005 Phys. Rev. Lett. 95 243603

    [23]

    Su X L, Tan A H, Jia X J, Pan Q, Xie C D, Peng K C 2006 Opt. Lett. 31 1133

    [24]

    Jing J, Feng S, Bloomer R, Pfister O 2006 Phys. Rev. A 74 041804(R)

    [25]

    Shang Y N,Wang D, Yan Z H,WangWZ, Jia X J, Peng K C 2008 Acta Phys. Sin. 57 3514 (in Chinese) [商娅娜, 王东, 闫智辉, 王文哲, 贾晓军, 彭堃墀 2008 57 3514]

    [26]

    Villar A S, Martinelli M, Fabre C, Nussenzveig P 2006 Phys. Rev. Lett. 97 140504

    [27]

    Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S , Martinelli M, Nussenzveig P 2009 Science 326 823

    [28]

    Debuisschert T, Sizmann A, Giacobino E, Fabre C 1993 J. Opt. Soc. Am. B 10 1668

    [29]

    Heidmann A, Horowicz R J, Reynaud S, Giacobino E, Fabre C, Camy G 1987 Phys. Rev. Lett. 59 2555

    [30]

    Kasai K, Gao J R, Fabre C 1997 Europhys. Lett. 40 25

    [31]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 31 3761

    [32]

    Bachor H A 1998 A Guide to Experiments in Quantum Optics (Weinheim: Wiley-VCh) p70

    [33]

    Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2007 Opt. Express 15 18236

    [34]

    Cassemiro K N, Villar A S, Valente P, Martinelli M, Nussenzveig P 2007 Opt. Lett. 32 695

    [35]

    César J E S, Coelho A S, Cassemiro K N, Villar A S, Lassen M , Nussenzveig P, Martinelli M 2009 Phys. Rev. A 79 063816

    [36]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [37]

    Simon R 2000 Phys. Rev. Lett. 84 2726

    [38]

    Van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315

  • [1]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [2]

    Shor P W, Siam J 1997 Computer 26 1484

    [3]

    Furusawa A, S?rensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [4]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904

    [5]

    Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503

    [6]

    Kimble H J 2008 Nature 453 1023

    [7]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903

    [8]

    Su X L, Tan A H, Jia X J, Zhang J, Xie C D, Peng K C 2007 Phys. Rev. Lett. 98 070502

    [9]

    Tan A H, Wang Y, Jin X L, Su X L, Jia X J, Zhang J, Xie C D, Peng K C 2008 Phys. Rev. A 78 013828

    [10]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [11]

    Yoshikawa J, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501

    [12]

    Wang Y, Su X L, Shen H, Tan A H, Xie C D, Peng K C 2010 Phys. Rev. A 81 022311

    [13]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482

    [14]

    Dong R, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G, Andersen U L 2008 Nature Phys. 4 919

    [15]

    Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731

    [16]

    Pan Q, Wang H, Zhang Y, Su H, Xie C D, Peng K C, Yu Z G, Lu Q M 1998 Acta Phys. Sin. 47 1625 (in Chinese) [潘庆, 王海, 张云, 苏红, 谢常德, 彭堃墀, 于正刚, 路庆明 1998 47 1625]

    [17]

    Li X Y, Jing J T, Zhang J, Pan Q, Xie C D, Peng K C 2002 Acta Phys. Sin. 51 966 (in Chinese) [李小英, 荆杰泰, 张靖, 潘庆, 谢常德, 彭堃墀 2002 51 966]

    [18]

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 2717 (in Chinese) [贾晓军, 苏晓龙, 潘 庆, 谢常德, 彭堃墀 2005 54 2717]

    [19]

    Zhao C Y, Tan W H 2006 J. Opt. Soc. Am. B 23 2174

    [20]

    Zhao C Y, Tan W H 2007 J. Mod. Opt. 54 97

    [21]

    Heidmann A, Horowicz R J, Reynaud S, Giacobino E, Fabre C, Camy G 1987 Phys. Rev. Lett. 59 2555

    [22]

    Villar A S, Cruz L S, Cassemiro K N, Martinelli M, Nussenzveig P 2005 Phys. Rev. Lett. 95 243603

    [23]

    Su X L, Tan A H, Jia X J, Pan Q, Xie C D, Peng K C 2006 Opt. Lett. 31 1133

    [24]

    Jing J, Feng S, Bloomer R, Pfister O 2006 Phys. Rev. A 74 041804(R)

    [25]

    Shang Y N,Wang D, Yan Z H,WangWZ, Jia X J, Peng K C 2008 Acta Phys. Sin. 57 3514 (in Chinese) [商娅娜, 王东, 闫智辉, 王文哲, 贾晓军, 彭堃墀 2008 57 3514]

    [26]

    Villar A S, Martinelli M, Fabre C, Nussenzveig P 2006 Phys. Rev. Lett. 97 140504

    [27]

    Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S , Martinelli M, Nussenzveig P 2009 Science 326 823

    [28]

    Debuisschert T, Sizmann A, Giacobino E, Fabre C 1993 J. Opt. Soc. Am. B 10 1668

    [29]

    Heidmann A, Horowicz R J, Reynaud S, Giacobino E, Fabre C, Camy G 1987 Phys. Rev. Lett. 59 2555

    [30]

    Kasai K, Gao J R, Fabre C 1997 Europhys. Lett. 40 25

    [31]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 31 3761

    [32]

    Bachor H A 1998 A Guide to Experiments in Quantum Optics (Weinheim: Wiley-VCh) p70

    [33]

    Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2007 Opt. Express 15 18236

    [34]

    Cassemiro K N, Villar A S, Valente P, Martinelli M, Nussenzveig P 2007 Opt. Lett. 32 695

    [35]

    César J E S, Coelho A S, Cassemiro K N, Villar A S, Lassen M , Nussenzveig P, Martinelli M 2009 Phys. Rev. A 79 063816

    [36]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [37]

    Simon R 2000 Phys. Rev. Lett. 84 2726

    [38]

    Van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315

  • [1] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , 2024, 73(23): . doi: 10.7498/aps.20241094
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [3] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [4] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案.  , 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [5] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [6] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展.  , 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [7] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [8] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案.  , 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [9] 刘兆斌, 李凯, 曾天海, 王锋, 宋新兵, 邵彬, 邹健. 类氢原子核质量对电子状态的影响.  , 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [10] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案.  , 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [11] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发.  , 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [12] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强.  , 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [13] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠.  , 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [14] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究.  , 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [15] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备.  , 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [16] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离.  , 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [17] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法.  , 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响.  , 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 邓文武, 郑 俊, 谭华堂, 李高翔. 非简并四波混频体系中双模光场的纠缠特性.  , 2007, 56(12): 6970-6975. doi: 10.7498/aps.56.6970
计量
  • 文章访问数:  7612
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-21
  • 修回日期:  2011-07-05
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map