-
研究了掺杂后poly(3,4-ethylene dioxythiophene):poly(styrenesulphonic acid)(PEDOT ∶PSS)电导率的变化以及掺杂PEDOT ∶PSS薄膜对聚合物太阳能电池器件性能的影响. 实验发现,向PEDOT ∶PSS中掺入极性溶剂二甲基亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率最大值达到1.25 S/cm,比未掺杂时提高了3个数量级. 将掺杂的PEDOT ∶PSS薄膜作为缓冲层应用于聚合物电池 (ITO/PEDOT ∶PSS/P3HT ∶PCBM/LiF/Al) 中,发现高电导率的PEDOT ∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性能. 最好的聚合物太阳能电池在100 mW/cm2的光照下,开路电压(Voc)为0.63 V,短路电流密度(Jsc)为11.09 mAcm-2,填充因子(FF)为63.7%,能量转换效率()达到4.45%.
-
关键词:
- PEDOT ∶PSS /
- 电导率 /
- 聚合物太阳能电池 /
- 能量转换效率
In this paper, we investigate the doping effect on conductivity of poly(3,4-ethylene dioxythiophene):poly (styrenesulphonic acid)(PEDOT ∶PSS)and its influence on performance of polymer solar cell. The experiment demonstrates that the conductivity of PEDOT ∶PSS is improved obviously by doping polar solvent dimethyl sulfoxide (DMSO). The maximum of the conductivity is 1.25 S/cm when the doping concentration reaches 10 wt%, which increases about three orders of magnitude compared with the undoped. Based on doped PEDOT ∶PSS used as an anode buffer layer, the polymer solar cell (ITO/PEDOT ∶PSS/P3HT:PCBM/LiF/Al) shows an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT ∶PSS. Consequently, it improves the whole performance of polymer solar cell. The short-circuit current density (Jsc) of 11.09 mAcm-2, the open circuit voltage (Voc) of 0.63 V, and the fill factor (FF) of 63.7% are obtained under 100 mW/cm2 air-mass solar simulator illumination, yielding a 4.45% power conversion efficiency ().-
Keywords:
- PEDOT ∶PSS /
- conductivity /
- polymer solar cells /
- power conversion efficiency
[1] Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617
[2] [3] Li G, Shrotriya V, Yao Y, Yang Y 2005 Nat. Mater. 4 864
[4] [5] Scharber M C, Mhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789
[6] [7] Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 4
[8] [9] Li G, Yao Y, Yang H C, Shrotriya V, Yang G W, Yang Y 2007 Adv. Funct. Mater. 17 1636
[10] [11] Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠、彭俊彪、周晓明 2008 57 3898]
[12] Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 59 2131]
[13] [14] [15] Hoppe H, Sariciftci N S 2006 J. Mater. Chem. 16 45
[16] Moliton A, Nunzi J M 2006 Polym. Int. 55 583
[17] [18] [19] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38
[20] Mazhari B 2006 Sol. Energy Mater Sol. Cells 90 1021
[21] [22] [23] Xue J G, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013
[24] Zhang F L, Gadisa A, Inganas O, Svensson M, Andersson M R 2004 Appl. Phys. Lett. 84 3906
[25] [26] Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Metal. 126 311
[27] [28] [29] Snait H J, Kenrick H, Chiesa M, Friend R H 2005 Polymer 46 2573
[30] [31] Huang J, Miller P F, Wilson J S, de Mello A J, de Mello J C, Bradley D D C 2005 Adv. Funct. Mater. 15 290
[32] [33] Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, van Haesendonck C, van der Auweraer M, Salaneck W R, Berggren M 2006 Chem. Mater. 18 4354
[34] [35] Wang T J, Qi Y Q, Xu J K, Hu X J, Chen P 2005 Appl. Surf. Sci. 250 188
[36] [37] Ko C J, Lin Y K, Chen F C, Chu C W 2007 Appl. Phys. Lett. 90 063509
[38] Braun D, Heeger A J 1991 J. Electron. Mater. 20 945
[39] [40] [41] Huang Y F, Inigo A R, Chang C C, Li K C, Liang C F, Chang C W, Lim T S, Chen S H, White J D, Jeng U S, Su A C, Huang Y S, Peng K Y, Chen S A, Pai W W, Lin C H, Tameev A R, Novikov S V, Vannikov A V, Fann W S 2007 Adv. Funct. Mater. 17 2902
[42] Mihailetchi V D, Xie H, de Bore B, L Koster J A, Blom P W M 2006 Adv. Funct. Mater. 19 699
[43] -
[1] Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617
[2] [3] Li G, Shrotriya V, Yao Y, Yang Y 2005 Nat. Mater. 4 864
[4] [5] Scharber M C, Mhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789
[6] [7] Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 4
[8] [9] Li G, Yao Y, Yang H C, Shrotriya V, Yang G W, Yang Y 2007 Adv. Funct. Mater. 17 1636
[10] [11] Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠、彭俊彪、周晓明 2008 57 3898]
[12] Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 59 2131]
[13] [14] [15] Hoppe H, Sariciftci N S 2006 J. Mater. Chem. 16 45
[16] Moliton A, Nunzi J M 2006 Polym. Int. 55 583
[17] [18] [19] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38
[20] Mazhari B 2006 Sol. Energy Mater Sol. Cells 90 1021
[21] [22] [23] Xue J G, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013
[24] Zhang F L, Gadisa A, Inganas O, Svensson M, Andersson M R 2004 Appl. Phys. Lett. 84 3906
[25] [26] Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Metal. 126 311
[27] [28] [29] Snait H J, Kenrick H, Chiesa M, Friend R H 2005 Polymer 46 2573
[30] [31] Huang J, Miller P F, Wilson J S, de Mello A J, de Mello J C, Bradley D D C 2005 Adv. Funct. Mater. 15 290
[32] [33] Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, van Haesendonck C, van der Auweraer M, Salaneck W R, Berggren M 2006 Chem. Mater. 18 4354
[34] [35] Wang T J, Qi Y Q, Xu J K, Hu X J, Chen P 2005 Appl. Surf. Sci. 250 188
[36] [37] Ko C J, Lin Y K, Chen F C, Chu C W 2007 Appl. Phys. Lett. 90 063509
[38] Braun D, Heeger A J 1991 J. Electron. Mater. 20 945
[39] [40] [41] Huang Y F, Inigo A R, Chang C C, Li K C, Liang C F, Chang C W, Lim T S, Chen S H, White J D, Jeng U S, Su A C, Huang Y S, Peng K Y, Chen S A, Pai W W, Lin C H, Tameev A R, Novikov S V, Vannikov A V, Fann W S 2007 Adv. Funct. Mater. 17 2902
[42] Mihailetchi V D, Xie H, de Bore B, L Koster J A, Blom P W M 2006 Adv. Funct. Mater. 19 699
[43]
计量
- 文章访问数: 14314
- PDF下载量: 872
- 被引次数: 0