-
β-Mn2V2O7 powder is successefully prepared at 200—220℃ under pH=6—9 by a novel hydrothermal synthesis technology. The phase, the morphology and the microstructure of the prepared sample are investigated by XRD, SEM, EDS, TEM, HRTEM and SAED. The results show that β-Mn2V2O7 powder has a thortveitite structure with monoclinic system. The powder synthesized at 200 ℃ under pH=6—7 has a rod morphology, while that at 200 ℃ under pH=8—9 has coexistent petal and rod morphologies. HRTEM and SAED measurements indicate that β-Mn2V2O7 grows anisotropically and has crystalline integrality. Magnetic properties are measured by superconducting quantum interference device (SQUID) in a temperature range of 2—300 K under a magnetic field of 1T. The magnetic measurement results indicate that β-Mn2V2O7 undergoes a transition from antiferromagnetic to paramagnetic with a Néel temperature of 24 K. Above 100K, the inverse susceptibility is fitted well to the Curie-Weiss law and paramagnetic Weiss temperature θ=-24.6 K, and the Curie constant C=9.846 K emu mol-f.u.-1 can be caculated, which means that there exists an obvious antiferromagnetic interaction in thortveitite-type β-Mn2V2O7, the antiferromagnetic behavior is caused by the superchange of Mn2+-O2--Mn2+.
[1] Touaiher M, Rissouli K, Benkhouja K 2004 Mater. Chem. Phys. 85 41
[2] Zhou C C, Liu F M, Ding P 2009 Chin. Phys. B 18 5055
[3] He Z Z, Ueda Y 2008 J. Solid State Chem. 181 235
[4] Liao J H, Leroux F, Payen C, Guyomard D, Piffard Y 1996 J. Solid State Chem.121 214
[5] Salah A A, Benkhouja K, Jaafari K, Romero P J, Climent E 2005 J. Alloys Compd. 402 213
[6] Dorm E, Bengt O 1967 Acta Chem. Scand. 21 590
[7] Brown I D, Calvo C 1970 J. Solid State Chem. 1 173
[8] Liao J H, Leroux F, Payen C, Guyomard D, Piffard Y 1996 J. Solid State Chem. 121 214
[9] He Z Z, Ueda Y 2008 J. Cryst. Growth.310 171
[10] Zhang A P, Zhang J Z 2009 Acta Phys. Sin. 58 2336(in Chinese) [张爱平、张进治 2009 〖11] Tang K F 1989 Acta Phys. Sin. 38 1191 (in Chinese)[唐坤发 1989 〖12] Sun Z Q, Zhu S X1989 Acta Phys. Sin. 38 175 (in Chinese)[孙宗琦、朱仕学 1989 38 175]
[11] Liu Y, Zeng Y P 2009 Mater. Lett.63 28
[12] Shi E W, Chen Z Z, Yuan R L, Zheng Y Q 2004 Hydrothermal Crystallography. (Beijing: Science press)p150 (in Chinese) [施尔畏、 陈之战、 元如林、 郑燕青 2004 水热结晶学(北京: 科学出版社)第150页]
[13] Zhong W Z, Hua S K 1999 Crystal growth morphology(Hefei:Chinese University of Science and Technology Press)p50—68 (in Chinese)[仲维卓、华素坤 1999 晶体生长形态学 (合肥: 中国科技大学出版社)第50页]
-
[1] Touaiher M, Rissouli K, Benkhouja K 2004 Mater. Chem. Phys. 85 41
[2] Zhou C C, Liu F M, Ding P 2009 Chin. Phys. B 18 5055
[3] He Z Z, Ueda Y 2008 J. Solid State Chem. 181 235
[4] Liao J H, Leroux F, Payen C, Guyomard D, Piffard Y 1996 J. Solid State Chem.121 214
[5] Salah A A, Benkhouja K, Jaafari K, Romero P J, Climent E 2005 J. Alloys Compd. 402 213
[6] Dorm E, Bengt O 1967 Acta Chem. Scand. 21 590
[7] Brown I D, Calvo C 1970 J. Solid State Chem. 1 173
[8] Liao J H, Leroux F, Payen C, Guyomard D, Piffard Y 1996 J. Solid State Chem. 121 214
[9] He Z Z, Ueda Y 2008 J. Cryst. Growth.310 171
[10] Zhang A P, Zhang J Z 2009 Acta Phys. Sin. 58 2336(in Chinese) [张爱平、张进治 2009 〖11] Tang K F 1989 Acta Phys. Sin. 38 1191 (in Chinese)[唐坤发 1989 〖12] Sun Z Q, Zhu S X1989 Acta Phys. Sin. 38 175 (in Chinese)[孙宗琦、朱仕学 1989 38 175]
[11] Liu Y, Zeng Y P 2009 Mater. Lett.63 28
[12] Shi E W, Chen Z Z, Yuan R L, Zheng Y Q 2004 Hydrothermal Crystallography. (Beijing: Science press)p150 (in Chinese) [施尔畏、 陈之战、 元如林、 郑燕青 2004 水热结晶学(北京: 科学出版社)第150页]
[13] Zhong W Z, Hua S K 1999 Crystal growth morphology(Hefei:Chinese University of Science and Technology Press)p50—68 (in Chinese)[仲维卓、华素坤 1999 晶体生长形态学 (合肥: 中国科技大学出版社)第50页]
计量
- 文章访问数: 9377
- PDF下载量: 837
- 被引次数: 0