搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒脉冲激光加热金属薄膜的理论和实验研究

马维刚 王海东 张兴 王玮

引用本文:
Citation:

飞秒脉冲激光加热金属薄膜的理论和实验研究

马维刚, 王海东, 张兴, 王玮

Theoretical and experimental study of femtosecond pulse laser heating on thin metal film

Ma Wei-Gang, Wang Hai-Dong, Zhang Xing, Wang Wei
PDF
导出引用
  • 超短脉冲激光加热可应用于研究材料中载能子之间的超快相互作用,同时也广泛应用于超快激光加工.此前人们提出的双温度模型和抛物一步模型都只能用于描述超短脉冲激光加热金属薄膜后热量传递过程的特定片段.基于双温度模型和傅里叶导热定律,提出普适的理论模型可用于完整描述飞秒激光加热金属薄膜/基底时的整个热量传递过程.同时在300 K温度下,采用背面抽运-表面探测瞬态热反射法实验研究了飞秒脉冲激光加热金属薄膜的热量传递过程,理论预测曲线和实验测量结果符合较好,验证了理论模型的正确性.基于此模型测量得到了金薄膜的电子-声子
    Ultrashort pulse laser heating is not only capable of resolving and observing the ultrafast interaction of energy carriers, i.e. electrons, phonons, but also widely applied to material processing, i.e., laser ablation. However, the previous theories, i.e., two-temperature model, parabolic one-step model, can be applied only to some limited segments. In this paper, according to the two-temperature model and Fourier’s law, a general theoretical model is presented for the description of the entire heat relaxation process after the thin metal film deposited on the substrate has been heated by the ultrashort pulse laser. Moreover, the heat conduction process is also experimentally studied by using the rear-pump front-probe transient thermoreflectance technique on Au/glass and Au/SiC at 300 K, and the theoretical prediction accords well with the experimental result, which illustrates the validity of the present theoretical model. Based on the good agreement between theoretical predictions and experimental data, the electron-phonon coupling factor of the thin gold film and thermal boundary conductance of the Au/glass and Au/SiC interfaces are extracted and the measured results are in good agrement with the previous reported values. The electron-phonon coupling factor is close to that of the bulk material and does not exhibit size effect. The thermal boundary conductance is greater than the prediction of diffuse mismatch model, and the reasons responsible for the discrepancies are electrons participating in the interfacial heat conduction, interfacial atom diffusion and inelastic scattering.
    • 基金项目: 国家自然科学基金(批准号:50730006,50976053)资助的课题.
    [1]

    Chen J K, Latham W P, Beraun J E 2005 J. Laser Appl. 17 63

    [2]

    Xia Z L, Fan Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese)[夏志林、范正修、邵建达 2006 55 3007]

    [3]

    Kaganov M I, Lifshitz I M, Tanatarov L V 1957 Sov. Phys. JETP 4 173

    [4]

    Anisimov S, Kapeliovich B, Perelman T 1974 Sov. Phys. JETP 39 375

    [5]

    Qiu T Q, Tien C L 1993 J. Heat Transf. Trans. ASME 115 835

    [6]

    Eesley G L 1983 Phys. Rev. Lett. 51 2140

    [7]

    Xiong G C, Zou Y H, Xia Z J, Yuan P, Lian G J, Li J 1994 Acta Phys. Sin. 43 1860 (in Chinese)[熊光成、邹英华、夏宗炬、袁 平、连贵君、李 洁 1994 43 1860]

    [8]

    Norris P M, Caffrey A P, Stevens R J, Klopf J M, McLeskey J T, Smith A N 2003 Rev. Sci. Instrum. 74 400

    [9]

    Cahill D G 2004 Rev. Sci. Instrum. 75 5119

    [10]

    Costescu R M, Wall M A, Cahill D G 2003 Phys. Rev. B 67 054302

    [11]

    Schmidt A J, Chen X Y, Chen G 2008 Rev. Sci. Instrum. 79 114902

    [12]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东、马维刚、张 兴、王玮 2010 59 3856]

    [13]

    Kittel C 2005 Introduction to Solid State Physics (8th Ed.) (New York: Wiley) p141

    [14]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789

    [15]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768

    [16]

    Zhang H X, Guo H, Chen Z, Zhang G B, Li Z H 2007 J. Micromech. Microeng. 17 775

    [17]

    Hohlfeld J, Wellershoff S S, Güdde J, Conrad U, Jhnke V, Matthias E 2000 Chem. Phys. 251 237

    [18]

    Norris P M, Hopkins P E 2009 J. Heat Transf.Trans. ASME 131 043207

    [19]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [20]

    Hopkins P E, Norris P M, Stevens R J, Beechem T E, Graham S 2008 J. Heat Transf.Trans. ASME 130 062402

    [21]

    Jagannadham K, Wang Hsin 2002 J. Appl. Phys. 91 1224

    [22]

    Chen G 1998 Phys. Rev. B 57 14958

  • [1]

    Chen J K, Latham W P, Beraun J E 2005 J. Laser Appl. 17 63

    [2]

    Xia Z L, Fan Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese)[夏志林、范正修、邵建达 2006 55 3007]

    [3]

    Kaganov M I, Lifshitz I M, Tanatarov L V 1957 Sov. Phys. JETP 4 173

    [4]

    Anisimov S, Kapeliovich B, Perelman T 1974 Sov. Phys. JETP 39 375

    [5]

    Qiu T Q, Tien C L 1993 J. Heat Transf. Trans. ASME 115 835

    [6]

    Eesley G L 1983 Phys. Rev. Lett. 51 2140

    [7]

    Xiong G C, Zou Y H, Xia Z J, Yuan P, Lian G J, Li J 1994 Acta Phys. Sin. 43 1860 (in Chinese)[熊光成、邹英华、夏宗炬、袁 平、连贵君、李 洁 1994 43 1860]

    [8]

    Norris P M, Caffrey A P, Stevens R J, Klopf J M, McLeskey J T, Smith A N 2003 Rev. Sci. Instrum. 74 400

    [9]

    Cahill D G 2004 Rev. Sci. Instrum. 75 5119

    [10]

    Costescu R M, Wall M A, Cahill D G 2003 Phys. Rev. B 67 054302

    [11]

    Schmidt A J, Chen X Y, Chen G 2008 Rev. Sci. Instrum. 79 114902

    [12]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东、马维刚、张 兴、王玮 2010 59 3856]

    [13]

    Kittel C 2005 Introduction to Solid State Physics (8th Ed.) (New York: Wiley) p141

    [14]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789

    [15]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768

    [16]

    Zhang H X, Guo H, Chen Z, Zhang G B, Li Z H 2007 J. Micromech. Microeng. 17 775

    [17]

    Hohlfeld J, Wellershoff S S, Güdde J, Conrad U, Jhnke V, Matthias E 2000 Chem. Phys. 251 237

    [18]

    Norris P M, Hopkins P E 2009 J. Heat Transf.Trans. ASME 131 043207

    [19]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [20]

    Hopkins P E, Norris P M, Stevens R J, Beechem T E, Graham S 2008 J. Heat Transf.Trans. ASME 130 062402

    [21]

    Jagannadham K, Wang Hsin 2002 J. Appl. Phys. 91 1224

    [22]

    Chen G 1998 Phys. Rev. B 57 14958

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究.  , 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟.  , 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [4] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [5] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化.  , 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [6] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究.  , 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [7] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导.  , 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [8] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究.  , 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [9] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟.  , 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [10] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学.  , 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [11] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [12] 朱敏, 李晓红, 李国强, 常利阳, 谢长鑫, 邱荣, 李家文, 黄文浩. 飞秒脉冲激光辐照对硅发光性能的影响.  , 2014, 63(5): 057801. doi: 10.7498/aps.63.057801
    [13] 王孟舟, 姜永恒, 刘天元, 孙成林, 里佐威. 络合物形成对电子-声子耦合的影响.  , 2013, 62(18): 187802. doi: 10.7498/aps.62.187802
    [14] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究.  , 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [15] 王海东, 马维刚, 张兴, 王玮. 飞秒激光热反射系统测量金属薄膜中的热波.  , 2010, 59(6): 3856-3862. doi: 10.7498/aps.59.3856
    [16] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究.  , 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [17] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性.  , 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [18] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析.  , 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [19] 胡明列, 王清月, 栗岩峰, 王 专, 柴 路, 张伟力. 飞秒激光在双折射微结构光纤中模式控制的四波混频效应的实验研究.  , 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [20] 胡明列, 王清月, 栗岩峰, 王 专, 张志刚, 柴 路, 章若冰. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究.  , 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
计量
  • 文章访问数:  11249
  • PDF下载量:  1719
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-06
  • 修回日期:  2010-09-15
  • 刊出日期:  2011-03-05

/

返回文章
返回
Baidu
map