搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能带工程对射频功率SiGe异质结双极晶体管热性能的改善

肖盈 张万荣 金冬月 陈亮 王任卿 谢红云

引用本文:
Citation:

能带工程对射频功率SiGe异质结双极晶体管热性能的改善

肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云

Effect of bandgap engineering on thermal characteristic of radiofrequency power SiGe heterojunction bipolar transistor

Xiao Ying, Zhang Wan-Rong, Jin Dong-Yue, Chen Liang, Wang Ren-Qing, Xie Hong-Yun
PDF
导出引用
  • 众所周知,基区"能带工程"可以改善Si1-xGe x 基区异质结双极晶体管(HBT)的直流、频率和噪声等特性,但"能带工程"对HBT热学特性的影响的研究还很少。本文基于三维热电反馈模型,分析了"能带工程"对射频功率SiGe HBT热性能的影响。考虑到电流增益随温度的变化以及发射结电压负温度系数,给出了器件热稳定所需最小镇流电阻(REmin)的表达式,在此基础上给出了非均匀镇流电阻的设计,进一步提高了SiGe HBT的热稳定性
    As is well known, direct-current (DC) characteristic, frequency characteristic and noise characteristic of SiGe heterojunction bipolar transistor(HBT) can be improved by "bandgap engineering"(by Ge composition). However, the effect of "bandgap engineering" on the thermal characteristic of HBT has not been reported. In this paper, the effect of "bandgap engineering" is analyzed by the use of 3D thermal-electric feedback model. Considering the temperature dependence of emitter junction voltage and current gain, the expression of the minimum emitter ballasting resistance (REmin), which is necessary for SiGe HBT thermal stability, is presented. Furthermore, non-uniform ballasting resistance design is given so as to further enhance the thermal stability of device. It is found that the surface temperature of the device decreases with the increase of Ge composition in SiGe base. This is because SiGe HBT internally possesses the thermal-electrical negative feedback. For the same dissipated power, the REmin decreases as Ge composition increases, which is beneficial to the improvment of the performance of radio frequancy(RF) power SiGe HBT. These results provide a good guide to further optimization of RF power SiGe HBT performance, especially thermal design.
    • 基金项目: 国家自然科学基金(批准号:60776051),北京市自然科学基金(批准号:4082007),北京市教委科技发展计划(批准号:KM200710005015,KM200910005001)资助的课题.
    [1]

    Comeau J P, Najafizadeh L, Andrews J M, Gnana A P, Cressler J D 2007 IEEE Microw. Wirel Compon. Lett. 17 349

    [2]

    Ma L, Gao Y 2009 Chin. Phys. B 18 303

    [3]

    Lin G J, Lai H K, Li C, Chen S Y,Yu J Z 2008 Chin. Phys. B 17 3479

    [4]

    Dong W F, Yang Q Q, Li J, Wang Q M, Chui Q, Zhou J M, Huang Q 1996 Chin. Phys. 5 456

    [5]

    Lai C J, Li Z H, Li Z J, Zhang B, Zhang Y R 2009 Chin. Phys. B 18 763

    [6]

    Hu H Y, Zhang H M, Dai X Y, Jia X Z, Cui X Y, Wang W, Ou J F, Wang X Y 2005 Chin. Phys. 14 1439

    [7]

    Cao Q J, Zhang Y M 2008 Chin. Phys. B 17 4622

    [8]

    Zhou S L,Huang H, Huang Y Q, Ren X M 2007 Acta Phys. Sin. 56 2890 (in Chinese) [周守利、黄 辉、黄永清、任晓敏 2007 56 2890]

    [9]

    Vassighi A, Sachdev M 2006 IEEE Trans. on Device Mater. Reliab. 6 300

    [10]

    Liou J J, Liou L L, Huang C I 1994 IEEE Proc. Circuits Device Syst. 141 469

    [11]

    Shinohara Y, Ishikawa R, Honjo K 2008 IEEE Trans. Microw. Theory Tech. 56 747

    [12]

    Zhu Y, Twynam J K, Yagura M, Hasegawa M, Hasegawa T, Eguchi Y, Amano Y, Suematsu E, Sakuno K, Matsumoto N, Sato H, Hashizume N 1999 IEEE MTT-S International Microwave Symposium Digest Anaheim, USA, June 13—19, 1999 p431

    [13]

    Gao G B, Wang M Z, Gui X, Morkoc H 1989 IEEE Trans. on Electron. Devices 36 854

    [14]

    Hidaka O, Morizuka K,Mochizuki H 1995 Jpn. J. Appl. Phys. 34 886

    [15]

    Schuppen A, Gerlach S, Dietrich H, Wandrei D, Seiler U,Konig U 1996 IEEE Microw. Guid. Wave Lett. 6 341

    [16]

    Klaassen D B L, Slotboom J W, Degraaff H C 1992 Solid-State Electron 35 125

    [17]

    Zhang W R, Yang J W, Liu H J 2004 IEEE International Conference on Microwave and Milli-wave Technology Beijing, China, August 18—21, 2004 p594

    [18]

    Hower P L, Govil P K 1974 IEEE Trans. on Electron. Devices 21 617

  • [1]

    Comeau J P, Najafizadeh L, Andrews J M, Gnana A P, Cressler J D 2007 IEEE Microw. Wirel Compon. Lett. 17 349

    [2]

    Ma L, Gao Y 2009 Chin. Phys. B 18 303

    [3]

    Lin G J, Lai H K, Li C, Chen S Y,Yu J Z 2008 Chin. Phys. B 17 3479

    [4]

    Dong W F, Yang Q Q, Li J, Wang Q M, Chui Q, Zhou J M, Huang Q 1996 Chin. Phys. 5 456

    [5]

    Lai C J, Li Z H, Li Z J, Zhang B, Zhang Y R 2009 Chin. Phys. B 18 763

    [6]

    Hu H Y, Zhang H M, Dai X Y, Jia X Z, Cui X Y, Wang W, Ou J F, Wang X Y 2005 Chin. Phys. 14 1439

    [7]

    Cao Q J, Zhang Y M 2008 Chin. Phys. B 17 4622

    [8]

    Zhou S L,Huang H, Huang Y Q, Ren X M 2007 Acta Phys. Sin. 56 2890 (in Chinese) [周守利、黄 辉、黄永清、任晓敏 2007 56 2890]

    [9]

    Vassighi A, Sachdev M 2006 IEEE Trans. on Device Mater. Reliab. 6 300

    [10]

    Liou J J, Liou L L, Huang C I 1994 IEEE Proc. Circuits Device Syst. 141 469

    [11]

    Shinohara Y, Ishikawa R, Honjo K 2008 IEEE Trans. Microw. Theory Tech. 56 747

    [12]

    Zhu Y, Twynam J K, Yagura M, Hasegawa M, Hasegawa T, Eguchi Y, Amano Y, Suematsu E, Sakuno K, Matsumoto N, Sato H, Hashizume N 1999 IEEE MTT-S International Microwave Symposium Digest Anaheim, USA, June 13—19, 1999 p431

    [13]

    Gao G B, Wang M Z, Gui X, Morkoc H 1989 IEEE Trans. on Electron. Devices 36 854

    [14]

    Hidaka O, Morizuka K,Mochizuki H 1995 Jpn. J. Appl. Phys. 34 886

    [15]

    Schuppen A, Gerlach S, Dietrich H, Wandrei D, Seiler U,Konig U 1996 IEEE Microw. Guid. Wave Lett. 6 341

    [16]

    Klaassen D B L, Slotboom J W, Degraaff H C 1992 Solid-State Electron 35 125

    [17]

    Zhang W R, Yang J W, Liu H J 2004 IEEE International Conference on Microwave and Milli-wave Technology Beijing, China, August 18—21, 2004 p594

    [18]

    Hower P L, Govil P K 1974 IEEE Trans. on Electron. Devices 21 617

  • [1] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能.  , 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [2] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究.  , 2021, (): . doi: 10.7498/aps.70.20211795
    [3] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算.  , 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [4] 宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌. SOI SiGe HBT结构设计及频率特性研究.  , 2014, 63(11): 118501. doi: 10.7498/aps.63.118501
    [5] 刘静, 武瑜, 高勇. 沟槽型发射极SiGe异质结双极化晶体管新结构研究.  , 2014, 63(14): 148503. doi: 10.7498/aps.63.148503
    [6] 孟代仪, 申兰先, 晒旭霞, 董国俊, 邓书康. Ge掺杂n型Sn基Ⅷ型单晶笼合物的制备及热电传输特性.  , 2013, 62(24): 247401. doi: 10.7498/aps.62.247401
    [7] 张瑜洁, 张万荣, 金冬月, 陈亮, 付强, 郭振杰, 邢光辉, 路志义. Ge组分分布对基区杂质非均匀分布的SiGe HBT温度特性的影响.  , 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [8] 赵昕, 张万荣, 金冬月, 付强, 陈亮, 谢红云, 张瑜洁. 基区Ge组分分布对SiGe HBTs热学特性的影响.  , 2012, 61(13): 134401. doi: 10.7498/aps.61.134401
    [9] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究.  , 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [10] 杨洲, 王茺, 王洪涛, 胡伟达, 杨宇. Ge组分对应变Si1-xGe x 沟道p-MOSFET电学特性影响.  , 2011, 60(7): 077102. doi: 10.7498/aps.60.077102
    [11] 胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛. 含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型.  , 2011, 60(1): 017303. doi: 10.7498/aps.60.017303
    [12] 徐小波, 张鹤鸣, 胡辉勇. 薄膜SOI上SiGe HBT集电结耗尽电荷和电容改进模型.  , 2011, 60(11): 118501. doi: 10.7498/aps.60.118501
    [13] 徐小波, 张鹤鸣, 胡辉勇, 许立军, 马建立. SOI部分耗尽SiGe HBT集电结空间电荷区模型.  , 2011, 60(7): 078502. doi: 10.7498/aps.60.078502
    [14] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型.  , 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [15] 邓 宁, 陈培毅, 李志坚. Si组分对SiGe量子点形状演化的影响.  , 2004, 53(9): 3136-3140. doi: 10.7498/aps.53.3136
    [16] 吕 懿, 张鹤鸣, 戴显英, 胡辉勇, 舒 斌. SiGe HBT势垒电容模型.  , 2004, 53(9): 3239-3244. doi: 10.7498/aps.53.3239
    [17] 余旻, 杨宏顺, 阮可青, 李鹏程, 李慧玲, 柴一晟, 曹烈兆. La2-xSrxCuO4单晶膜的热电势与电阻率.  , 2002, 51(3): 663-667. doi: 10.7498/aps.51.663
    [18] 杨宏顺, 余旻, 李世燕, 李鹏程, 柴一晟, 章良, 陈仙辉, 曹烈兆. 新型超导体MgB2的热电势和电阻率研究.  , 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [19] 李玉芝, 许存义, 周贵恩, 刘宏宝, 张裕恒. 退火a-Ge/Pb叠层膜的扩散机制与电阻率的反常行为.  , 1993, 42(5): 832-839. doi: 10.7498/aps.42.832
    [20] 张其瑞, 周先意, 王劲松, 管惟炎. 纵向磁场中超导金属玻璃Zr78Co22的载流电阻态.  , 1988, 37(6): 1036-1041. doi: 10.7498/aps.37.1036
计量
  • 文章访问数:  8854
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-21
  • 修回日期:  2010-07-25
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map