-
采用高频感应熔融、退火结合放电等离子烧结方法制备高锰硅(HMS)化合物MnSi1.70+x(x=0,0.05,0.1,0.15),系统研究了Si含量变化对材料相组成、微结构和热电性能的影响规律.结果表明,当x<0.1时,样品由HMS和贫Si的MnSi金属相两相组成,随着Si含量x的增加,MnSi相相对含量减小;当x=0.1时,所得样品为单相HMS化合物;当x>0.1时,样品由HMS和过量Si两相组成.随着x的增加,由于样品中高电导的金属相MnSi含量逐渐减少,样品的电导率逐渐下降,而Seebeck系数随之增加.室温下样品载流子浓度和有效质量随x增大逐渐减小,而迁移率逐渐增加.MnSi和Si杂相与HMS相比均为高热导相,因此当x=0.1时,由于样品为单相HMS,从而表现出最低热导率和最高ZT值.MnSi1.80样品在800 K时热导率最小值达到2.25 W ·m-1K-1,并在850 K处获得最大ZT值(0.45).MnSi1.70+x(x=0, 0.05, 0.1, 0.15) compounds have been prepared by induction melting-annealing procedure combined with spark plasma sintering method. The phase composition and the thermoelectric properties of higher manganese silicide (HMS) with different Si contents are investigated. The results indicate that the samples with x<0.1 include HMS phase and MnSi phase, and the relative content of MnSi phase decreases with x value increasing. The sample with x=0.1 is single phase HMS. The phase compositions of the sample with x>0.1 are HMS and Si. As x value inereases the electrical conductivity of the sample gradually decreases, while the Seebeck coefficient increases because metallic MnSi phase decreases. The carrier concentration and the effective mass of the sample at room temperature decrease and the carrier mobility increases with x value increasing. In the sample with x=0.1, the impurity phase content is the least, which results in the lowest thermal conductivity and a minimum value of 2.25 W ·m-1K-1 at 800 K. The maximum ZT value of 0.45 is obtained at 850 K for MnSi1.80.
[1] Li H, Tang X F, Liu T X, Song C, Zhang Q J 2005 Acta Phys. Sin. 54 5481 (in Chinese)[李 涵、唐新峰、刘桃香、宋 晨、张清杰 2005 54 5481]
[2] Xiong C, Tang X F, Qi Q, Deng S K, Zhang Q J 2005 Acta Phys. Sin. 55 6630 (in Chinese)[熊 聪、唐新峰、祁 琼、邓书康、张清杰 2005 55 6630]
[3] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[4] Tang X F, Chen L D, Wang J , Luo P F, Zhang Q J, Goto T, Hirai T, Yuan R Z 2004 Acta Phys. Sin. 53 1463 (in Chinese) [唐新峰、陈立东、王 军、罗派峰、张清杰、後藤孝、平井敏雄、袁润章 2004 53 1463]
[5] Harman T C, Taylor P J, Walsh M P, La Forge B E 2002 Science 297 2229
[6] Su T C, Jia X P, Ma H A, Zang C Y, Tian Y J, Zhou L, Guo J G, Dong L 2008 Mater. Lett. 62 3269
[7] Zhu T J, Yan F, Zhang S N, Zhao X B 2007 J. Phys. D 40 3537
[8] Fedorov M I, Zaitsev V K, Solomkin F, Vedernikov M 1997 Tech. Phys. Lett. 23 602
[9] Fedorov M I, Zaitsev V K 2006 Thermoelectrics Handbook (New York: CRC Press) p31-3
[10] Schwomma O, Preisinger A, Nowotny H, Wittmann A 1964 Monatsch. Chem. 95 1527
[11] Knott H, Mueller M, Heaton L 1967 Acta Crystallogr. 23 549
[12] Zwilling G, Nowotny H 1973 Monatsh. Chem. 104 668
[13] Gottlieb U, Sulpice A, Lambert-Andron B, Laborde O 2003 J. Alloys Compd. 361 13
[14] Ye H, Amelinckx S 1986 J. Solid State Chem. 61 8
[15] Kojima T, Nishida I, Sakata T 1979 J. Cryst. Growth 47 589
[16] Nishida I, Masumoto K, Kawasumi I, Sakata M 1980 J. Less-Common Met. 71 293
[17] Kawasumi I, Sakata M, Nishida I, Masumoto K 1981 J. Mater. Sci. 16 355
[18] Asanabe S 1965 J. Phys. Soc. Jpn. 20 933
[19] Gro E, Riffel M, Sthrer U 1995 J. Mater. Res. 10 34
[20] Massalski T, Okamoto H, Subramanian P, Kacprzak L 1990 Binary Alloy Phase Diagrams (Materials Park: ASM International)
[21] Rowe D 2006 Thermoelectrics Handbook (New York: CRC Press) p1-5
[22] Umemoto M, Liu Z, Omatsuzawa R, Tsuchiya K 2000 Mater. Sci. Forum 343 918
[23] Ioffe A, Wert C 1962 J. Electrochem. Soc. 109 43
[24] Migas D B, Shaposhnikov V L, Filonov A B, Borisenko V E, Dorozhkin N N 2008 Phys. Rev. B 77 075205
-
[1] Li H, Tang X F, Liu T X, Song C, Zhang Q J 2005 Acta Phys. Sin. 54 5481 (in Chinese)[李 涵、唐新峰、刘桃香、宋 晨、张清杰 2005 54 5481]
[2] Xiong C, Tang X F, Qi Q, Deng S K, Zhang Q J 2005 Acta Phys. Sin. 55 6630 (in Chinese)[熊 聪、唐新峰、祁 琼、邓书康、张清杰 2005 55 6630]
[3] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[4] Tang X F, Chen L D, Wang J , Luo P F, Zhang Q J, Goto T, Hirai T, Yuan R Z 2004 Acta Phys. Sin. 53 1463 (in Chinese) [唐新峰、陈立东、王 军、罗派峰、张清杰、後藤孝、平井敏雄、袁润章 2004 53 1463]
[5] Harman T C, Taylor P J, Walsh M P, La Forge B E 2002 Science 297 2229
[6] Su T C, Jia X P, Ma H A, Zang C Y, Tian Y J, Zhou L, Guo J G, Dong L 2008 Mater. Lett. 62 3269
[7] Zhu T J, Yan F, Zhang S N, Zhao X B 2007 J. Phys. D 40 3537
[8] Fedorov M I, Zaitsev V K, Solomkin F, Vedernikov M 1997 Tech. Phys. Lett. 23 602
[9] Fedorov M I, Zaitsev V K 2006 Thermoelectrics Handbook (New York: CRC Press) p31-3
[10] Schwomma O, Preisinger A, Nowotny H, Wittmann A 1964 Monatsch. Chem. 95 1527
[11] Knott H, Mueller M, Heaton L 1967 Acta Crystallogr. 23 549
[12] Zwilling G, Nowotny H 1973 Monatsh. Chem. 104 668
[13] Gottlieb U, Sulpice A, Lambert-Andron B, Laborde O 2003 J. Alloys Compd. 361 13
[14] Ye H, Amelinckx S 1986 J. Solid State Chem. 61 8
[15] Kojima T, Nishida I, Sakata T 1979 J. Cryst. Growth 47 589
[16] Nishida I, Masumoto K, Kawasumi I, Sakata M 1980 J. Less-Common Met. 71 293
[17] Kawasumi I, Sakata M, Nishida I, Masumoto K 1981 J. Mater. Sci. 16 355
[18] Asanabe S 1965 J. Phys. Soc. Jpn. 20 933
[19] Gro E, Riffel M, Sthrer U 1995 J. Mater. Res. 10 34
[20] Massalski T, Okamoto H, Subramanian P, Kacprzak L 1990 Binary Alloy Phase Diagrams (Materials Park: ASM International)
[21] Rowe D 2006 Thermoelectrics Handbook (New York: CRC Press) p1-5
[22] Umemoto M, Liu Z, Omatsuzawa R, Tsuchiya K 2000 Mater. Sci. Forum 343 918
[23] Ioffe A, Wert C 1962 J. Electrochem. Soc. 109 43
[24] Migas D B, Shaposhnikov V L, Filonov A B, Borisenko V E, Dorozhkin N N 2008 Phys. Rev. B 77 075205
计量
- 文章访问数: 9527
- PDF下载量: 780
- 被引次数: 0