-
The high temperature annealing effect of DC characteristics of the different enhancement-mode AlGaN/GaN high-electron-mobility transistors (HEMTs) were investigated. The threshold voltage shifted from 0.12 V to 0.57 V and the gate leakage current was reduced one order after the recessed-gate enhancement-mode AlGaN/GaN HEMTs were annealed at 500 ℃ for 5 min in N2 atmosphere. The threshold voltage shifted from 0.23 V to -0.69 V and the gate leakage current increased after the F-implantation enhancement-mode AlGaN/GaN HEMTs were annealed at 400 ℃ for 2 min in N2 atmosphere. The height of Schottky barrier increased in annealing process that enhanced the depletion of gate to channel electrons, so that the threshold voltage shifted in the positive direction of x axis, the gate leakage current was reduced and the device can work at higher gate voltage. The depletion of F ions and the increased barrier height of F ions were weakened after annealing, so that the threshold voltage shifted in negative direction of x axis and the gate leakage current increased. The channel electron mobility of F-implantation enhancement-mode AlGaN/GaN HEMTs increased obviously after annealing process.
[1] Masataka H, Toshiaki M, Takashi M 2006 IEEE Electron. Device. Lett. 27 16
[2] Nakayama T, Ando Y, Okamoto Y, Inoue T, Miyamoto H 2006 Electron. Lett. 42 489
[3] Lanford W B, Tanaka T, Otoki Y, Adesida I 2005 Electron. Lett. 41 449
[4] Zhang H, Miller E J, Yu E T 2006 J. Appl. Phys. 99 023703
[5] Cai Y,Zhou Y G, Chen K J, Lau K M 2005 IEEE Electron. Device. Lett. 26 435
[6] Cai Y,Zhou Y G, Lau K M, Chen K J 2006 IEEE Trans. Electron. Device. 53 2207
[7] Wang C, Zhang J F, Quan S, Hao Y, Zhang J C, Ma X H, 2008 Chin. J. Semiconduct. 29 1682
[8] Lin R B, Wang X J, Feng Q, Wang C, Zhang J C, Hao Y 2008 Acta Phys. Sin. 55 4487(in Chinese) [林若兵、王欣娟、冯 倩、王 冲、张进城、郝 跃 2008 57 4487]
[9] Wang C, Quan S, Zhang J F, Hao Y, Feng Q, Chen J F 2009 Acta Phys. Sin. 58 1966(in Chinese) [王 冲、全 思、张金凤、郝 跃、冯 倩、陈军峰 2009 58 1966]
[10] Drozdovski N V, Caverly R H 2002 Trans. Microwave Theory Tech. 50 4
[11] Wang C, Feng Q, Hao Y, Wan H 2006 Acta Phys. Sin. 55 6085(in Chinese) [王 冲、冯 倩、郝 跃、万 辉 2006 55 6085]
[12] Jeon C M, Jang H W, Lee J L 2002 Appl. Phys. Lett. 82 391
-
[1] Masataka H, Toshiaki M, Takashi M 2006 IEEE Electron. Device. Lett. 27 16
[2] Nakayama T, Ando Y, Okamoto Y, Inoue T, Miyamoto H 2006 Electron. Lett. 42 489
[3] Lanford W B, Tanaka T, Otoki Y, Adesida I 2005 Electron. Lett. 41 449
[4] Zhang H, Miller E J, Yu E T 2006 J. Appl. Phys. 99 023703
[5] Cai Y,Zhou Y G, Chen K J, Lau K M 2005 IEEE Electron. Device. Lett. 26 435
[6] Cai Y,Zhou Y G, Lau K M, Chen K J 2006 IEEE Trans. Electron. Device. 53 2207
[7] Wang C, Zhang J F, Quan S, Hao Y, Zhang J C, Ma X H, 2008 Chin. J. Semiconduct. 29 1682
[8] Lin R B, Wang X J, Feng Q, Wang C, Zhang J C, Hao Y 2008 Acta Phys. Sin. 55 4487(in Chinese) [林若兵、王欣娟、冯 倩、王 冲、张进城、郝 跃 2008 57 4487]
[9] Wang C, Quan S, Zhang J F, Hao Y, Feng Q, Chen J F 2009 Acta Phys. Sin. 58 1966(in Chinese) [王 冲、全 思、张金凤、郝 跃、冯 倩、陈军峰 2009 58 1966]
[10] Drozdovski N V, Caverly R H 2002 Trans. Microwave Theory Tech. 50 4
[11] Wang C, Feng Q, Hao Y, Wan H 2006 Acta Phys. Sin. 55 6085(in Chinese) [王 冲、冯 倩、郝 跃、万 辉 2006 55 6085]
[12] Jeon C M, Jang H W, Lee J L 2002 Appl. Phys. Lett. 82 391
计量
- 文章访问数: 9078
- PDF下载量: 854
- 被引次数: 0