搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN双异质结F注入增强型高电子迁移率晶体管

王冲 赵梦荻 裴九清 何云龙 李祥东 郑雪峰 毛维 马晓华 张进成 郝跃

引用本文:
Citation:

AlGaN/GaN双异质结F注入增强型高电子迁移率晶体管

王冲, 赵梦荻, 裴九清, 何云龙, 李祥东, 郑雪峰, 毛维, 马晓华, 张进成, 郝跃

Enhancement mode AlGaN/GaN double heterostructure high electron mobility transistor with F plasma treatment

Wang Chong, Zhao Meng-Di, Pei Jiu-Qing, He Yun-Long, Li Xiang-Dong, Zheng Xue-Feng, Mao Wei, Ma Xiao-Hua, Zhang Jin-Cheng, Hao Yue
PDF
导出引用
  • 理论模拟了不同GaN沟道厚度的双异质结(AlGaN/GaN/AlGaN/GaN)材料对高电子迁移率晶体管(HEMT)特性的影响, 并模拟了不同F注入剂量下用该材料制作的增强型器件的特性差异. 采用双异质结材料, 结合F注入工艺成功地研制出了较高正向阈值电压的增强型HEMT器件. 实验研究了三种GaN沟道厚度制作的增强型器件直流特性的差异, 与模拟结果进行了对比验证. 采用降低的F 注入等离子体功率, 减小了等离子体处理工艺对器件沟道迁移率的损伤, 研制出的器件未经高温退火即实现了较高的跨导和饱和电流特性. 对14 nm GaN沟道厚度的器件进行了阈值电压温度稳定性和栅泄漏电流的比较研究, 并且分析了双异质结器件的漏致势垒降低效应.
    Effects of double heterostructure materials (AlGaN/GaN/AlGaN/GaN) with different GaN channel thickness values (14 nm, 28 nm, 60 nm) on the high electron mobility transistor (HEMT) are simulated by using silvaco, and furthermore, the differences in characteristic among the enhancement mode devices made from such double heterostructure materials with different F injection doses (150 W, 135 W) are also simulated. The simulation results show that the threshold voltage shifts towards positive direction and the saturation current decreases as the GaN channel thickness decreases. The two-dimensional electron gas (2 DEG) density could be reduced as GaN channel thickness decreases due to piezoelectric polarization weakened by backing AlGaN barrier. Combining F plasma treatment and double heterostructure material, the enhancement mode device with high positive threshold voltage is successfully developed. The DC characteristics of the enhancement mode devices with different GaN channel thickness values are analyzed comparatively, and the simulation results are validated by using the experimental results. The threshold voltages of these enhancement mode devices with GaN channel thickness values of 14 nm, 28 nm, and 60 nm reach 1.1 V, 0.8 V, and 0.3 V, respectively. The maximum transconductance values of these enhancement mode devices with GaN channel thickness values of 14 nm, 28 nm, and 60 nm reach 115 mS/mm, 137 mS/mm, and 198 mS/mm, respectively. The thinner GaN channel thickness in the double heterostructure could reduce the depth of quantum well and 2 DEG density, so that the device with a GaN channel thickness of 14 cm has a lower saturation current. The breakdown voltages and gate reverse leakage currents of the three kinds of devices are investigated, and the device with a thinner GaN channel has a lower leakage current and higher breakdown voltage due to weakened vertical electrical field in thinner channel double heterostructure. The damage of channel mobility in F plasma treatment is weakened by using a lower plasma power (135 W), and the enhancement mode device without annealing process demonstrates a better saturation current and transconductance characteristic. The results of the device with annealing confirm that the plasma damage is depressed at an F injection power of 135 W. The threshold voltage temperature stability of 14 nm GaN channel thickness device is studied, and Vth is only 0.4 V after 350 ℃ 2 min annealing process. Drain induced barrier lowering (DIBL) effects of the HEMTs with double heterostructures are investigated, and the DIBL value of the14 nm GaN channel device is 16 mV/V. The DIBL value indicates a good limiting property of the 2 DEG in double heterostructure device.
      通信作者: 王冲, wangchong197810@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 61574110, 61574112, 61106106)资助的课题.
      Corresponding author: Wang Chong, wangchong197810@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574110, 61574112 61106106).
    [1]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

    [2]

    Zhang X Y, Tan R B, Sun J D, Li X X, Zhou Y, L L, Qin H 2015 Chin. Phys. B 24 105201

    [3]

    Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C, Hao Y 2015 Chin. Phys. B 24 017303

    [4]

    Wang W K, Li Y J, Lin C K, Chan Y J, Chen G T, Chyi J I 2004 IEEE Trans. Electron Dev. 25 52

    [5]

    Cai Y, Zhou Y G, Lau K M, Chen K J 2006 IEEE Trans. Electron Dev. 53 2207

    [6]

    Tohru, Tomohiro N 2008 IEEE Trans. Electron Dev. 29 668

    [7]

    Zanandrea A, Bahat-Treidel E, Rampazzo F, Stocco A, Meneghini M, Zanoni E, Hilt O, Ivo P, Wuerfl J, Meneghesso G 2012 Microelectron. Reliab. 52 2426

    [8]

    Park P S, Siddharth R 2011 IEEE Trans. Electron. Dev. 58 704

    [9]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE Trans. Electron Dev. 53 356

    [10]

    10 Zervos M, Kostopoulos A, Constantinidis G, Kayambaki M, Georgakilas A 2002 J. Appl. Phys. 91 4387

    [11]

    Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Zhang H X, Liu X Y 2014 IEEE Trans. Electron Dev. 61 1341

    [12]

    Martin-Horcajo S, Tadjer M J, Romero M F, Cuerdo R, Calle F 2011 Proceedings of the 8th Spanish Conference on Electron Devices Palma de Mallorca, Illes Balears, Feb. 8-11, 2011

    [13]

    Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104

    [14]

    Miller E J, Dang X Z, Yu E T 2000 J. Appl. Phys. 88 5952

  • [1]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

    [2]

    Zhang X Y, Tan R B, Sun J D, Li X X, Zhou Y, L L, Qin H 2015 Chin. Phys. B 24 105201

    [3]

    Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C, Hao Y 2015 Chin. Phys. B 24 017303

    [4]

    Wang W K, Li Y J, Lin C K, Chan Y J, Chen G T, Chyi J I 2004 IEEE Trans. Electron Dev. 25 52

    [5]

    Cai Y, Zhou Y G, Lau K M, Chen K J 2006 IEEE Trans. Electron Dev. 53 2207

    [6]

    Tohru, Tomohiro N 2008 IEEE Trans. Electron Dev. 29 668

    [7]

    Zanandrea A, Bahat-Treidel E, Rampazzo F, Stocco A, Meneghini M, Zanoni E, Hilt O, Ivo P, Wuerfl J, Meneghesso G 2012 Microelectron. Reliab. 52 2426

    [8]

    Park P S, Siddharth R 2011 IEEE Trans. Electron. Dev. 58 704

    [9]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE Trans. Electron Dev. 53 356

    [10]

    10 Zervos M, Kostopoulos A, Constantinidis G, Kayambaki M, Georgakilas A 2002 J. Appl. Phys. 91 4387

    [11]

    Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Zhang H X, Liu X Y 2014 IEEE Trans. Electron Dev. 61 1341

    [12]

    Martin-Horcajo S, Tadjer M J, Romero M F, Cuerdo R, Calle F 2011 Proceedings of the 8th Spanish Conference on Electron Devices Palma de Mallorca, Illes Balears, Feb. 8-11, 2011

    [13]

    Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104

    [14]

    Miller E J, Dang X Z, Yu E T 2000 J. Appl. Phys. 88 5952

  • [1] 白如雪, 郭红霞, 张鸿, 王迪, 张凤祁, 潘霄宇, 马武英, 胡嘉文, 刘益维, 杨业, 吕伟, 王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究.  , 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [2] 黄兴杰, 邢艳辉, 于国浩, 宋亮, 黄荣, 黄增立, 韩军, 张宝顺, 范亚明. 具有阻挡层的H等离子体处理增强型p-GaN栅AlGaN/GaN HEMT研究.  , 2022, 71(10): 108501. doi: 10.7498/aps.71.20212192
    [3] 高扬, ChandanPandey, 孔德胤, 王春, 聂天晓, 赵巍胜, 苗俊刚, 汪力, 吴晓君. 退火效应增强铁磁异质结太赫兹发射实验及机理.  , 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [4] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [5] 杨娜娜, 陈轩, 汪尧进. 磁电异质结及器件应用.  , 2018, 67(15): 157508. doi: 10.7498/aps.67.20180856
    [6] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应.  , 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [7] 刘静, 武瑜, 高勇. 沟槽型发射极SiGe异质结双极化晶体管新结构研究.  , 2014, 63(14): 148503. doi: 10.7498/aps.63.148503
    [8] 王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐. 新型量子点场效应增强型单光子探测器.  , 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [9] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟.  , 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [10] 许立军, 张鹤鸣. 环栅肖特基势垒金属氧化物半导体场效应管漏致势垒降低效应研究.  , 2013, 62(10): 108502. doi: 10.7498/aps.62.108502
    [11] 王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算.  , 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [12] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究.  , 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [13] 孙中华, 王红艳, 王辉, 张志东, 张中月. 金纳米环双体尺寸和耦合效应对表面等离子体共振特性的影响.  , 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [14] 王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛. 漏致势垒降低效应对短沟道应变硅金属氧化物半导体场效应管阈值电压的影响.  , 2011, 60(2): 027102. doi: 10.7498/aps.60.027102
    [15] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应.  , 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [16] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机.  , 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [17] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究.  , 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [18] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响.  , 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应.  , 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 陈雅深. 双Maxwell分布电子驱动的等离子体.  , 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
计量
  • 文章访问数:  6774
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 修回日期:  2015-11-20
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map