搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CHF3双频电容耦合放电等离子体特性研究

胡佳 徐轶君 叶超

引用本文:
Citation:

CHF3双频电容耦合放电等离子体特性研究

胡佳, 徐轶君, 叶超

CHF3 dual-frequency capacitively coupled plasma

Hu Jia, Xu Yi-Jun, Ye Chao
PDF
导出引用
  • 研究了用于SiCOH 低介电常数薄膜刻蚀的CHF3气体在1356 MHz/2 MHz,2712 MHz/2 MHz和60 MHz/2 MHz双频电容耦合放电时的等离子体性质.发现2 MHz低频源功率的增大主要导致F基团密度的增大;而高频频率从1356,2712增大到60 MHz,导致CF2基团的密度增大和电极之间F基团密度的轴向空间不均匀性增加.根据电子温度的分布规律及离子能量随高频源频率的变化关系,提出CF2基团的产生主要通过电子-中性气体碰撞,而F基团的产生是离子-中性气体碰撞的结果.
    This paper investigates the intermediate gas phase in the CHF3 dual-frequency capacitively couple plasma (DF-CCP) driven by the high-frequency (HF) of 1356 MHz,2712 MHz or 60 MHz and the low-frequency (LF) of 2 MHz power sources,which was used to etch the SiCOH low dielectric constant (low-k) films. The increasing of 2 MHz LF power led to the increase of F radical concentration,and the increasing of HF frequency from 1356 MHz and 2712 MHz to 60 MHz led to the increase of CF2 concentration and a poor spatial uniformity of F radical between the electrodes. According to the electron temperature distribution at different LF power and HF frequency,and the dependence of ion energy on the high frequency,the CF2radicals were found to come from the CHF3 dissociation by the electron-neutrals collisions,and the F radical from the CHF3 dissociation induced by the ions-neutrals thermal collisions.
    • 基金项目: 国家自然科学基金(批准号:10575074,10975105, 10635010)资助的课题.
    [1]

    [1]Shamiryan D,Abell T,Iacopi F,Maex K 2004 Mater. Today 7 34

    [2]

    [2]Maex K,Baklanov M R,Shamiryan D,Iacopi F,Brongersma S H,Yanovitskaya Z S 2003 J. Appl. Phys. 93 8793

    [3]

    [3]Abe H,Yoneda M,Fujiwara N 2008 Jpn. J. Appl. Phys. 47 1435

    [4]

    [4]Tatsumi T 2007 Appl. Surf. Sci. 253 6716

    [5]

    [5]Eon D,Raballand V,Cartry G,Cardinaud C 2007 J. Phys. D: Appl. Phys. 40 3951

    [6]

    [6]Ning Z Y,Cheng S H 1999 Acta Phys. Sin. 48 1950 (in Chinese) [宁兆元、程珊华 1999 48 1950]

    [7]

    [7]He L R,Gu C M,Shen W Z,Cao J C,Ogawa H,Guo Q X 2005 Acta Phys. Sin. 54 4938 (in Chinese) [荷莉蓉、顾春明、沈文忠、曹俊诚、小川博司、郭其新 2005 54 4938]

    [8]

    [8]Lü L,Gong X,Hao Y 2008 Acta Phys. Sin. 57 1128 (in Chinese) [吕玲、龚欣、郝跃 2008 57 1128]

    [9]

    [9]Ma X T,Zheng W H,Ren G,Fan Z C,Chen L H 2007 Acta Phys. Sin. 56 977 (in Chinese) [马小涛、郑婉华、任刚、樊中朝、陈良惠 2007 56 977]

    [10]

    ]Ishihara K,Shimada T,Yagisawa T,Makabe T 2006 Plasma Phys. Contr. Fusion B 48 99

    [11]

    ]Miyauchi M,Miyoshi Y,PetroviDc' Z L,Makabe T 2007 Solid-State Electron. 51 1418

    [12]

    ]Denda T,Miyoshi Y,Komukai Y,Goto T,PetroviDc' Z L,Makabe T 2004 J. Appl. Phys. 95 870

    [13]

    ]Uchida S,Takashima S,Hori M,Fukasawa M,Ohshima K,Nagahata K,Tatsumi T 2008 J. Appl. Phys. 103 073303

    [14]

    ]Kinoshita K,Noda S,Morishita S,Itabashi N,Okigawa M,Sekine M,Inoue M 1999 J. Vac. Sci. Technol. A 17 1520

    [15]

    ]Georgieva V,Bogaerts A 2005 J. Appl. Phys. 98 023308

    [16]

    ]Ye C,Xu Y J,Huang X J,Ning Z Y 2009 Thin Solid Films (to be appeared)

    [17]

    ]Xu Y J,Ye C,Huang X J,Yuan J,Xing Z Y,Ning Z Y 2008 Chin. Phys. Lett. 25 2942

    [18]

    ]Qayyum A,Zeb S,Naveed M A,Ghauri S A,Zakaullah M,Waheed A 2005 J. Appl. Phys. 98 103303

    [19]

    ]Chingsungnoen A,Wilson J I B,Amornkitbamrung V,Thomas C,Burinprakhon T 2007 Plasma Sourc. Sci. Technol. 16 434

    [20]

    ]Takahashi K,Hori M,Goto T 1994 Jpn. J. Appl. Phys. 33 4745

    [21]

    ]Wang S,Xu X,Wang Y N 2007 Phys. Plasma 14 114501

    [22]

    ]Gahan D,Dolinaj B,Hopkins M B 2008 Rev. Sci. Instrum. 79 033502

    [23]

    ]Lee J K,Manuilenko O V,Babaeva N Y,Kim H C,Shon J W 2005 Plasma Sourc. Sci. Technol. 14 89

    [24]

    ]Huang X J,Xin Y,Yuan Q H,Ning ZY 2008 Phys. Plasma 15 073501

    [25]

    ]Li X S, Bi Z H, Chang D L, Li Z C, Wang S, Xu X, Xu Y, Lu W Q, Zhu A M, Wang Y N 2008 Appl. Phys. Lett. 93 031504

  • [1]

    [1]Shamiryan D,Abell T,Iacopi F,Maex K 2004 Mater. Today 7 34

    [2]

    [2]Maex K,Baklanov M R,Shamiryan D,Iacopi F,Brongersma S H,Yanovitskaya Z S 2003 J. Appl. Phys. 93 8793

    [3]

    [3]Abe H,Yoneda M,Fujiwara N 2008 Jpn. J. Appl. Phys. 47 1435

    [4]

    [4]Tatsumi T 2007 Appl. Surf. Sci. 253 6716

    [5]

    [5]Eon D,Raballand V,Cartry G,Cardinaud C 2007 J. Phys. D: Appl. Phys. 40 3951

    [6]

    [6]Ning Z Y,Cheng S H 1999 Acta Phys. Sin. 48 1950 (in Chinese) [宁兆元、程珊华 1999 48 1950]

    [7]

    [7]He L R,Gu C M,Shen W Z,Cao J C,Ogawa H,Guo Q X 2005 Acta Phys. Sin. 54 4938 (in Chinese) [荷莉蓉、顾春明、沈文忠、曹俊诚、小川博司、郭其新 2005 54 4938]

    [8]

    [8]Lü L,Gong X,Hao Y 2008 Acta Phys. Sin. 57 1128 (in Chinese) [吕玲、龚欣、郝跃 2008 57 1128]

    [9]

    [9]Ma X T,Zheng W H,Ren G,Fan Z C,Chen L H 2007 Acta Phys. Sin. 56 977 (in Chinese) [马小涛、郑婉华、任刚、樊中朝、陈良惠 2007 56 977]

    [10]

    ]Ishihara K,Shimada T,Yagisawa T,Makabe T 2006 Plasma Phys. Contr. Fusion B 48 99

    [11]

    ]Miyauchi M,Miyoshi Y,PetroviDc' Z L,Makabe T 2007 Solid-State Electron. 51 1418

    [12]

    ]Denda T,Miyoshi Y,Komukai Y,Goto T,PetroviDc' Z L,Makabe T 2004 J. Appl. Phys. 95 870

    [13]

    ]Uchida S,Takashima S,Hori M,Fukasawa M,Ohshima K,Nagahata K,Tatsumi T 2008 J. Appl. Phys. 103 073303

    [14]

    ]Kinoshita K,Noda S,Morishita S,Itabashi N,Okigawa M,Sekine M,Inoue M 1999 J. Vac. Sci. Technol. A 17 1520

    [15]

    ]Georgieva V,Bogaerts A 2005 J. Appl. Phys. 98 023308

    [16]

    ]Ye C,Xu Y J,Huang X J,Ning Z Y 2009 Thin Solid Films (to be appeared)

    [17]

    ]Xu Y J,Ye C,Huang X J,Yuan J,Xing Z Y,Ning Z Y 2008 Chin. Phys. Lett. 25 2942

    [18]

    ]Qayyum A,Zeb S,Naveed M A,Ghauri S A,Zakaullah M,Waheed A 2005 J. Appl. Phys. 98 103303

    [19]

    ]Chingsungnoen A,Wilson J I B,Amornkitbamrung V,Thomas C,Burinprakhon T 2007 Plasma Sourc. Sci. Technol. 16 434

    [20]

    ]Takahashi K,Hori M,Goto T 1994 Jpn. J. Appl. Phys. 33 4745

    [21]

    ]Wang S,Xu X,Wang Y N 2007 Phys. Plasma 14 114501

    [22]

    ]Gahan D,Dolinaj B,Hopkins M B 2008 Rev. Sci. Instrum. 79 033502

    [23]

    ]Lee J K,Manuilenko O V,Babaeva N Y,Kim H C,Shon J W 2005 Plasma Sourc. Sci. Technol. 14 89

    [24]

    ]Huang X J,Xin Y,Yuan Q H,Ning ZY 2008 Phys. Plasma 15 073501

    [25]

    ]Li X S, Bi Z H, Chang D L, Li Z C, Wang S, Xu X, Xu Y, Lu W Q, Zhu A M, Wang Y N 2008 Appl. Phys. Lett. 93 031504

  • [1] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究.  , 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [2] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟.  , 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [3] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究.  , 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [4] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制.  , 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [5] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断.  , 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性.  , 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [7] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究.  , 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [8] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [9] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性.  , 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [10] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究.  , 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [11] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究.  , 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [12] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究.  , 2008, 57(8): 5123-5129. doi: 10.7498/aps.57.5123
    [13] 丁振峰, 袁国玉, 高 巍, 孙景超. 柱面天线射频感性耦合等离子体放电模式特性的实验研究.  , 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [14] 孙 恺, 辛 煜, 黄晓江, 袁强华, 宁兆元. 60MHz电容耦合等离子体中电子能量分布函数特性研究.  , 2008, 57(10): 6465-6470. doi: 10.7498/aps.57.6465
    [15] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断.  , 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [16] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [17] 陈 钢, 潘佰良, 姚志欣. 气体脉冲放电等离子体阻抗的参量研究.  , 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
    [18] 叶 超, 杜 伟, 宁兆元, 程珊华. 栅网与偏压对CHF3电子回旋共振放电等离子体特性的影响.  , 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [19] 徐至展, 余玮, 张文琦, 徐铁峰. 双频激光在不均匀等离子体中的耦合.  , 1988, 37(7): 1144-1149. doi: 10.7498/aps.37.1144
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热.  , 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
计量
  • 文章访问数:  9284
  • PDF下载量:  1225
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-27
  • 修回日期:  2009-06-28
  • 刊出日期:  2010-02-05

/

返回文章
返回
Baidu
map