搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HI-13串列加速器上不稳定核85Sr(n,γ)截面的替代反应法测量

王涵语 邱奕嘉 林承键 吴晓光 韩银录 吴鸿毅 冯晶 郑云 杨磊 李聪博 骆天鹏 常昶 孙琪 朱德宇 赵亦轩 黄大湖 李天晓 郑敏 赵子豪 朱意威 赵坤灵 孙鹏飞 宋金兴 郭明伟 任四禧 郑小海

引用本文:
Citation:

HI-13串列加速器上不稳定核85Sr(n,γ)截面的替代反应法测量

王涵语, 邱奕嘉, 林承键, 吴晓光, 韩银录, 吴鸿毅, 冯晶, 郑云, 杨磊, 李聪博, 骆天鹏, 常昶, 孙琪, 朱德宇, 赵亦轩, 黄大湖, 李天晓, 郑敏, 赵子豪, 朱意威, 赵坤灵, 孙鹏飞, 宋金兴, 郭明伟, 任四禧, 郑小海

Measurement of 85Sr(n,γ) cross sections of unstable nuclei in HI-13 tandem accelerators by surrogate reaction method

WANG Hanyu, QIU Yijia, LIN Chengjian, WU Xiaoguang, HAN Yinlu, WU Hongyi, FENG Jing, ZHENG Yun, YANG Lei, LI Congbo, LUO Tianpeng, CAHNG Chang, SUN Qi, ZHU Deyu, ZHAO Yixuan, HUANG Dahu, LI Tianxiao, ZHENG Min, ZHAO Zihao, ZHU Yiwei, ZHAO Kunling, SUN Pengfei, SONG Jinxing, GUO Mingwei, REN Sixi, ZHENG Xiaohai
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 中子辐射俘获截面是核天体物理、核反应堆设计、核医学以及核技术应用等领域中所需的关键数据。目前,受制于实验技术上的困难,缺少半衰期短至数年或更短核素的中子辐射俘获截面测量数据。本文采用了一种间接测量短寿命核素反应截面的方法——替代反应法,在中国原子能科学研究院北京HI-13串列加速器上利用89Y (p,α)反应作为替代反应,产生与短寿命核素中子辐射俘获85Sr (n,γ)反应相同的复合核86Sr*进行替代反应法的实验研究。通过使用硅探测器组成的望远镜阵列与HPGe探测器阵列符合测量,得到了与特定能量角度的出射α粒子符合γ射线能谱,从而获得了不同激发能下复合核的γ衰变的概率。结合使用UNF唯象光学模型计算的复合核形成截面,得到了中子能量范围En=0.02~1.22 MeV的85Sr中子辐射俘获截面。并且,基于TALYS计算的自旋宇称分布,建立了修正模型用于补偿直接反应和替代反应中自旋-宇称布居的差异,改进了基于Weisskopf­Ewing近似下的间接测量结果。
    Neutron capture cross sections, as important parameters describing the probability of neutron-nucleus reactions, play a key role in multiple scientific fields. In astrophysics, neutron capture cross section data are essential elements for understanding stellar nucleosynthesis processes. In particular, in extreme environments such as supernova explosions and neutron star mergers, accurate neutron capture cross sections can reveal the secrets of heavy element formation. In the field of national security, neutron capture cross sections are crucial for the design of nuclear weapons and the security of nuclear materials. By accurately grasping the neutron capture characteristics of different nuclides, the nuclear reaction process can be optimized to ensure strategic security. In addition, in the simulation of nuclear power generation, neutron capture cross section data are the basis of reactor design and operational analysis. Through in-depth research and precise measurements of neutron capture cross sections, the safety and efficiency of nuclear reactors can be improved, promoting the sustainable development of nuclear energy. At present, there are few studies on neutron capture cross sections of nuclides with half-lives of only a few years or even shorter, mainly due to the complexity of measurement techniques and the instability of the nuclides themselves. The neutron capture cross section data of these nuclides are crucial for reactor design, nuclear medicine applications, and nuclear waste treatment. Further research requires the development of more advanced detection techniques and theoretical models to accurately measure and predict their neutron capture behavior.
    The surrogate reaction method, as an effective measurement means, plays an important role in the research of reaction cross sections of short-lived nuclides. Its basic idea is to indirectly obtain the reaction cross section information of short-lived nuclides by measuring the specific particles emitted by stable nuclides. Specifically, when stable nuclides are bombarded by high-energy particles, nuclear reactions will occur and specific particles will be released. By accurately measuring the energy, angle, and number of these particles, the cross section of short-lived nuclides in the corresponding reaction can be inferred. This method can not only overcome the technical difficulties of direct measurement of short-lived nuclides, but also improve the accuracy and reliability of the measurement results, providing important support for nuclear physics research. In addition, the substitute reaction method also shows broad application prospects in the fields of nuclear technology application and nuclear data assessment.
    The experiment was carried out on the Beijing HI-13 tandem accelerator at the China Institute of Atomic Energy. 89Y was bombarded with 22 MeV protons, and the 85Sr(n, γ) cross section was measured through the (p, αγ) reaction. The telescope array composed of silicon strip detectors can effectively identify the reaction products. By precisely measuring parameters such as the energy and angle of particles, the array can distinguish different nuclides, thus determining the outgoing particles. Combined with the γ-ray energy spectrum analysis of the HPGe detector, the (n, γ) reaction cross section data of 85Sr under the Weisskopf-Ewing (W-E) approximation were extracted. Due to the mismatch of the Jπ population between the existing alternative reactions and direct reactions, it is necessary to compensate for this mismatch and then correct the results. In order to obtain relatively reliable results, the Jπ population calculated by TALYS was used to revise the experimental data of the (n,γ) cross section.
    The results show that the cross section of 85Sr(n, γ) varies with neutron energy in a specific energy range, which is consistent with the trend of the existing international evaluation library data, verifying the effectiveness of the alternative reaction method for cross section measurement. It provides an important experimental basis for further exploring the nuclear reaction mechanism and nuclear data application. This method has reference significance for the cross section measurement of other nuclides.
  • [1]

    Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M, Busso M, Straniero O 1999Astrophys. J. Lett 525 886

    [2]

    Boutoux G, Jurado B, Méot V, Roig O, Mathieu L, Aïche M, Barreau G, Capellan N, Companis I, Czajkowski S, Schmidt K-H, Burke J T, Bail A, Daugas J M, Faul T, More P l, Pillet N, Théroine C, Derkx X, Sérot O, Matéa I, Tassan-Got L 2010Phys. Lett. B 692 297

    [3]

    Arcones A, Bardayan D, Beers T, Bernstein L, Blackmon J, Messer B, Brown B, Brown E, Brune C, Champagne A, Chieffi A, Couture A, Danielewicz P, Diehl R, El-Eid M, Escher J, Fields B, Fröhlich C, Herwig F, Hix W, Iliadis C, Lynch W, McLaughlin G, Meyer B, Mezzacappa A, Nunes F, O'Shea B, Prakash M, Pritychenko B, Reddy S, Rehm E, Rogachev G, Rutledge R 2017Prog Part Nucl Phys 94 1

    [4]

    Mumpower M R, Surman R, McLaughlin G C, Aprahamian A 2015Prog Part Nucl Phys 86 86

    [5]

    H. Schatz 2016J. Phys. G: Nucl. Part. Phys 43 064001

    [6]

    Reifarth R, Litvinov Y. A 2014Phys. Rev. ST Accel. Beams 17 014701

    [7]

    Ratkiewicz A, Cizewski J A, Pain S D, Adekola A S, Burke J T, Casperson R J, Fotiades N, McCleskey M, Burcher S, Shand C M, Austin R A E, Baugher T, Carpenter M P, Devlin M, Escher J, Hardy S, Hatarik R, Howard M E, Hughes R O, Jones K L, Kozub R L, Lister C J, Manning B, O'Donnell J M, Peters W A, Ross T J, Scielzo N D, Seweryniak D, Zhu S 201515th International Symposium on Capture Gamma Ray Spectroscopy and Related Topics Dresden, Germany, Aug 25-2993

    [8]

    Cramer J D, Britt H C 1970Nucl. Sci. Eng. 41 177

    [9]

    Britt H C, Wilhelmy J B 1979Nucl. Sci. Eng. 72 222

    [10]

    Boyer S, Dassié D, Wilson J N, Aïche M, Barreau G, Czajkowski S, Grosjean C, Guiral A, Haas B, Osmanov B, Aerts G, Berthoumieux E, Gunsing F, Theisen Ch, Thiollière N, Perrot L 2006Nucl. Phys. A 775 175

    [11]

    Allmond J, Bernstein L, Beausang C, Phair L, Bleuel D, Burke J, Escher J, Evans K, Goldblum B, Hatarik R, Jeppesen H, Lesher S, Mcmahan M, Rasmussen J, Scielzo N, Wiedeking M 2009Phys. Rev. C 79 054610

    [12]

    MA Nanru, LIN Chengjian, JIA Huiming, XU Xinxing, YANG Feng, YANG Lei, SUN Lijie, WANG Dongxi, LIU Zuhua, ZHANG Huanqiao 2017Nucl. Phys. Rev. 34(3) 351(in Chinese) [马南茹, 林承键, 贾会明, 徐新星, 杨峰, 杨磊, 孙立杰, 王东玺, 刘祖华, 张焕乔2017原子核物理评论34(3) 351]

    [13]

    Yan S Q, Li Z H, Wang Y B, Nishio K, Lugaro M, Karakas A I, Makii H, Mohr P, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Liu W P 2017Astrophys. J. 848 98

    [14]

    Yan S, Li Z H, Wang Y B, Nishio K, Makii H, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Bai X X, Qiao L H, Liu W 2016Phys. Rev. C 94 015804

    [15]

    Yan S Q, Li X Y, Nishio K, Lugaro M, Li Z H, Makii H, Pignatari M, Wang Y B, Orlandi R, Hirose K, Tsukada K, Mohr P, Li G S, Wang J G, Gao B S, Han Y L, Guo B, Li Y J, Shen Y P, Sato T K, Ito Y, Suzaki F, Su J, Yang Y Y, Wang J S, Ma J B, Ma P, Bai Z, Xu S W, Ren J, Fan Q W, Zeng S, Han Z Y, Nan W, Nan W K, Chen C, Lian G, Hu Q, Duan F F, Jin S Y, Tang X D, Liu W P 2021Astrophys. J. 919 84

    [16]

    Escher J, Harke J T, Hughes R O, Scielzo N D, Casperson R J, Ota S, Park H I, Saastamoinen A, Ross T J 2018Phys. Rev. Lett. 121 052501

    [17]

    Hauser W, Feshbach H 1952Phys. Rev. 87 366

    [18]

    Weisskopf V F, Ewing D H 1940Phys. Rev. 57 472

    [19]

    Escher J, Dietrich F. S 2006Phys. Rev. C 74 054601

    [20]

    Chiba S, Iwamoto O 2010Phys. Rev. C 81 044604

    [21]

    Escher J, Harke J T, Dietrich F S, Scielzo N D, Thompson I J, Younes W 2012Rev. Mod. Phys. 84 353

    [22]

    Lesher S R, Phair L, Bernstein L A, Bleuel D L, Harke J T, Church J A, Fallon P, Gibelin J, Scielzo N D, Wiedeking M 2010Nucl. Instrum. Methods Phys. Res., Sect. A 621 286

    [23]

    Hong R, Li C B, Li H D, Zheng Y, Wu X G, Li T X, Li Y Q, Wu H Y, Zheng M, Zhao Z H, He Z Y, Li J Z, Li G S, Guo C Y, Ni L, Zhou Z X, He C Y, Liu F L, Zhou X H, Liu M L, Zhang Y H, Wang S Y, Wang S, Zhu L H 2024Nucl. Phys. Rev 41(1) 244(in Chinese) [洪锐, 李聪博, 李会东, 郑云, 吴晓光, 李天晓, 李韵秋, 吴鸿毅, 郑敏, 赵子豪, 贺子阳, 李金泽, 李广顺, 郭成宇, 倪磊, 周振翔, 贺创业, 刘伏龙, 周小红, 柳敏良, 张玉虎, 王守宇, 王硕, 竺礼华2024原子核物理评论41(1) 244]

    [24]

    Reese M, Gerl J, Golubev P, Pietralla N 2015Nucl. Instrum. Methods Phys. Res., Sect. A 779 63

    [25]

    Tarasov O, Bazin D 2004Nucl. Phys. A 746 411

    [26]

    Koning A J, Hilaire S, Duijvestijn M C 2023Eur. Phys. J. A 59 131

    [27]

    Boutoux G 2011 Ph.D. Dissertation (Bordeaux: University of Bordeaux)

    [28]

    Brun R, Rademakers F, 1997Nucl. Instrum. Methods Phys. Res., Sect. A 389 81

    [29]

    Zhang J S 2002Nucl Sci Eng 142(2) 207

    [30]

    Forssén C, Dietrich F S, Escher J, Hoffman R D, Kelley K 2007 Phys. Rev. C 75 055807

    [31]

    Younes W, Britt H. C 2003Phys. Rev. C 67 024610

    [32]

    Galés S, Hourani E, Fortier S, Laurent H, Maison J M, Schapira J P 1977Nucl. Phys. A 288 221

    [33]

    Hisamochi K, Iwamoto O, Kisanuki A, Budihardjo S,Widodo S, Nohtomi A, Uozumi Y, Sakae T, Matoba M 1993Nucl. Phys. A 564 227

    [34]

    Duhamel-Chretien G, Perrin G, Perrin C, Comparat V V, Gerlic E, Galès S, Massolo C P 1991Phys. Rev. C 43 1115

    [35]

    Duhamel G, Perrin G, Didelez J P, Gerlic E, Langevin-Joliot H, Guillot J, Van de Wiele J 1981J. Phys. G: Nucl. Phys. 7 1415

    [36]

    Hilaire S, Lagrange Ch, Koning A J 2003Ann. Phys. 306 209

  • [1] 谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐. 基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究.  , doi: 10.7498/aps.74.20241775
    [2] 杨志刚, 刘颖超, 张仕青, 罗瑞鉴, 赵需谦, 连加荣, 屈军乐. 活细胞应激反应过程中线粒体和核仁微环境动力学的荧光寿命成像研究.  , doi: 10.7498/aps.73.20231990
    [3] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究.  , doi: 10.7498/aps.71.20220776
    [4] 王德鑫, 张苏雅拉吐, 蒋伟, 任杰, 王金成, 唐靖宇, 阮锡超, 王宏伟, 陈志强, 黄美容, 唐鑫, 胡新荣, 李鑫祥, 刘龙祥, 刘丙岩, 孙慧, 张岳, 郝子锐, 宋娜, 李雪, 牛丹丹, 利国, 蒙古夫. 不同厚度镥样品中子俘获反应实验研究.  , doi: 10.7498/aps.71.20212051
    [5] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究.  , doi: 10.7498/aps.70.20210742
    [6] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国. 离线测量钍快中子裂变反应率方法.  , doi: 10.7498/aps.63.162501
    [7] 陈泽, 张小平, 杨洪应, 郑强, 陈娜娜, 支启军. 等待点N=82附近核素β-衰变寿命的研究.  , doi: 10.7498/aps.63.162301
    [8] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质.  , doi: 10.7498/aps.62.223402
    [9] 羊奕伟, 刘荣, 严小松. 钍俘获反应率离线伽马测量方法.  , doi: 10.7498/aps.62.032801
    [10] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能.  , doi: 10.7498/aps.61.082901
    [11] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面.  , doi: 10.7498/aps.60.021101
    [12] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面.  , doi: 10.7498/aps.57.4817
    [13] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面.  , doi: 10.7498/aps.57.1569
    [14] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律.  , doi: 10.7498/aps.56.6722
    [15] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应.  , doi: 10.7498/aps.56.1339
    [16] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究.  , doi: 10.7498/aps.51.506
    [17] 白海洋, 陈红, 张云, 王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究.  , doi: 10.7498/aps.42.1134
    [18] 姚立山, 靳玉玲, 蔡敦九. 14MeV中子(n,T)与(n,3He)反应截面的系统学研究.  , doi: 10.7498/aps.42.17
    [19] 潘正瑛, 周鹏. 表面氧化层对共振反应寿命测量影响的Monte-Carlo模拟.  , doi: 10.7498/aps.37.776
    [20] 金卫国, 赵国庆, 邵其鋆, 任月华, 吴向坚, 周筑颖. 平面阻塞效应测量Ep=1565keV时27Al(p,α)24Mg共振反应寿命.  , doi: 10.7498/aps.36.1564
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map