搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导三元氢化物CaYH12电子及空穴掺杂调控的第一性原理研究

林建华 崔佳浩 庄全

引用本文:
Citation:

超导三元氢化物CaYH12电子及空穴掺杂调控的第一性原理研究

林建华, 崔佳浩, 庄全

First-Principles Study on the Regulation of Electron and Hole Doping in Superconducting Ternary Hydride CaYH12

Lin Jian-Hua, Cui Jia-Hao, Zhuang Quan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,高压下的富氢化合物被认为是室温超导体的最佳候选体系之一,如何降低富氢化合物稳定所需压力并保持其优异超导电性是目前该领域重要的科学问题.研究中利用第一性原理计算方法探索了电子及空穴掺杂对三元氢化物Pm-3m(CaYH12)动力学稳定性和超导电性的调控作用.结果表明,空穴掺杂可在晶格中产生“化学预压缩”效应,消除其在较低压力下的虚频声子,使其在较低压力下保持动力学稳定.当空穴掺杂浓度达到1.1 e/cell时,Pm-3m(CaYH12)的动力学稳定压力由180 GPa降低至70 GPa,且同时可以保持约194 K的超导转变温度.由此可见,空穴掺杂是一种实现Pm-3m(CaYH12)超导电性优化(低稳定压力、高温超导)的有效策略.本工作为三元氢化物在较低压力下实现高温超导提供了新途径,并为相关实验研究提供了理论支撑.
    Over the past decades, realizing room-temperature superconductivity has become the tireless pursuit of scientists. Guided by the ‘chemical precompression’ theory, hydrogen-rich compounds have emerged as prime candidates for high-temperature superconductors, positioning them at the forefront of superconducting materials research. Extensive computational studies have identified numerous binary hydrides with predicted superconducting transition temperatures (Tc) exceeding 200 K, such as CaH6, H3S, MgH6, YH6, YH9, YH10, and LaH10 et al. Significantly, the high-Tc of H3S, LaH10, CaH6, YH6, YH9 has been experimentally confirmed. Compared to binary hydrides, ternary hydrides offer more diverse chemical compositions and structures, potentially leading to enhanced properties. Zhang et al. theoretically designed a series of AXH8-type (A = Sc, Ca, Y, Sr, La, Ba; X = Be, B, Al) ternary hydrides with “fluorite-type” backbone, which were predicted to exhibit high-Tc under moderate pressure. Among them, LaBeH8 has been experimentally confirmed to achieve a Tc of 110 K at 80 GPa. The Tcs of ternary clathrate hydrides of Li2MgH16 and Li2NaH17 have been predicted to be significantly surpassing the room temperature, while the required stabilization pressures all exceed 200 GPa. Xie et al. and Liang et al. independently predicted CaYH12 compounds with Pm-3m and Fd-3m space groups, both of which exhibit high-Tc above 200 K at about 200 GPa. Other ternary hydrides, such as La-B-H, K-B-H, La-Ce-H, and Y-Ce-H, have also been extensively investigated. At current stage, a major focus of superconducting hydrides is to achieve high-temperature superconductivity at lower pressures. In this study, taking Pm-3m (CaYH12) as a representative, we systematically investigated the effects of electron and hole doping on the dynamical stability and superconductivity in ternary hydride by first-principal calculations. The Pm-3m (CaYH12) exhibits a Tc of 218 K at 200 GPa, which is consistent with previous report. When decompressing to below 180 GPa, imaginary phonons emerge. The analysis of doping simulations demonstrated that the electron doping exacerbates the softening of the imaginary phonons, whereas hole doping eliminates the imaginary frequencies. At the pressures of 130 GPa, 100 GPa and 70 GPa, the Pm-3m (CaYH12) phase can be stabilized by hole doping at the concentration of 0.9e/cell, 0.8 e/cell, and 1.1 e/cell, respectively. Further electron-phonon coupling calculations show that the Tcs of Pm-3m (CaYH12) at 130 GPa, 100 GPa and 70 GPa are 194 K, 209 K, and 194 K at the corresponding doping level, which are only 10-20 K less than the Tc at 200 GPa. At the pressure of 70 GPa, Tc slightly decreases to 189 K at a doping level of 1.2 e/cell, primarily due to the reduced ωlog compared to the case of 1.1e/cell. And the enhanced λ at 1.2 e/cell is mainly contributed by the average electron-phonon coupling matrix element $\left\langle I^2\right\rangle$ and average phonon frequency $\left\langle\omega^2\right\rangle^{1 / 2}$, rather than the electronic density of states at the Fermi level N(εF). These results indicated that hole doping represents a promising and effective strategy for optimizing the superconductivity of Pm-3m (CaYH12) by maintaining high-Tc at low pressures. Our study has paved an avenue for realizing high-temperature superconductors at low pressure.
  • [1]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515

    [2]

    Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631

    [3]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    [4]

    Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463

    [5]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [6]

    Feng X, Zhang J, Gao G, Liu H, Wang H 2015 RSC Adv. 5 59292

    [7]

    Li Y, Hao J, Liu H, Tse J S, Wang Y, Ma Y 2015 Sci. Rep. 5 9948

    [8]

    Liu H, Naumov, II, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990

    [9]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y 2017 Phys. Rev. Lett. 119 107001

    [10]

    Duan D, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102

    [11]

    Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z, Duan D 2021 Chin. Phys. Lett. 38 107401

    [12]

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407

    [13]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [14]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528

    [15]

    Salke N P, Davari Esfahani M M, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453

    [16]

    Li X, Huang X, Duan D, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y, Zhou Q, Liu B, Cui T 2019 Nat. Commun. 10 3461

    [17]

    Chen W, Semenok D V, Kvashnin A G, Huang X, Kruglov I A, Galasso M, Song H, Duan D, Goncharov A F, Prakapenka V B, Oganov A R, Cui T 2021 Nat. Commun. 12 273

    [18]

    Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, Eremets M I 2021 Nat. Commun. 12 5075

    [19]

    Ma L, Zhou M, Wang Y, Kawaguchi S, Ohishi Y, Peng F, Liu H, Liu G, Wang H, Ma Y 2021 Phys. Rev. Research 3 043107

    [20]

    Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H 2022 Phys. Rev. Lett. 128 167001

    [21]

    Li Z, He X, Zhang C, Wang X, Zhang S, Jia Y, Feng S, Lu K, Zhao J, Zhang J 2022 Nat. Commun. 13 2863

    [22]

    Wang Y, Wang K, Sun Y, Ma L, Wang Y, Zou B, Liu G, Zhou M, Wang H 2022 Chin. Phys. B 31 106201

    [23]

    Zhang X, Zhao Y, Yang G 2022 Wires Comput. Mol. Sci. 12 e1582

    [24]

    Liu P, Wang C, Zhang D, Wang X, Duan D, Liu Z, Cui T 2024 J. Phys. Condens. Matter. 36 353001

    [25]

    Sun Y, Zhong X, Liu H, Ma Y 2024 Natl. Sci. Rev. 11 nwad270

    [26]

    Zhao W, Huang X, Zhang Z, Chen S, Du M, Duan D, Cui T 2024 Natl. Sci. Rev. 11 nwad307

    [27]

    Li B, Yang Y, Fan Y, Zhu C, Liu S, Shi Z 2023 Chin. Phys. Lett. 40 097402

    [28]

    Zhang Z, Cui T, Hutcheon M J, Shipley A M, Song H, Du M, Kresin V Z, Duan D, Pickard C J, Yao Y 2022 Phys. Rev. Lett. 128 047001

    [29]

    Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H, Ma Y 2023 Phys. Rev. Lett. 130 266001

    [30]

    Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001

    [31]

    Xie H, Duan D, Shao Z, Song H, Wang Y, Xiao X, Li D, Tian F, Liu B, Cui T 2019 J. Phys. Condens. Matter. 31 245404

    [32]

    Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X F, He J, Gao G, Tian Y 2019 Phys. Rev. B 99 100505(R)

    [33]

    Liang X, Bergara A, Wei X, Song X, Wang L, Sun R, Liu H, Hemley R J, Wang L, Gao G, Tian Y 2021 Phys. Rev. B 104 134501

    [34]

    Gao M, Yan X W, Lu Z Y, Xiang T 2021 Phys. Rev. B. 104 L100504

    [35]

    Chen L C, Luo T, Cao Z Y, Dalladay-Simpson P, Huang G, Peng D, Zhang L L, Gorelli F A, Zhong G H, Lin H Q 2024 Nat. Commun. 15 1809

    [36]

    An D, Conway L J, Duan D, Zhang Z, Jiang Q, Song H, Huo Z, Pickard C J, Cui T 2024 Adv. Funct. Mater. 2418692

    [37]

    Yan X Z, Zhou X Z, Liu C F, Xu Y L, Huang Y B, Sheng X W, Chen Y M 2024 Chin. Phys. B 33 086301

    [38]

    Kong X, Gao M, Yan X W, Lu Z Y, Xiang T 2018 Chin. Phys. B 27 046301

    [39]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402

    [40]

    Wang C, Liu S, Jeon H, Yi S, Bang Y, Cho J H 2021 Phys. Rev. B 104 L020504

    [41]

    Yu H, Chen Y 2022 Phys. Rev. B 106 024515

    [42]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys. Condens. Matter. 21 395502

    [43]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [44]

    Dronskowski R, Blöchl P E 1993 J. Phys. Chem. 97 8617

    [45]

    Nazarov M V, Leng L, Leong Y, Chen L, Arellano-Ramirez I D 2014 Mold. J. Phys. Sci. 13 106

    [46]

    McMillan W L 1968 Phys. Rev. 167 331

    [47]

    Chan K T, Malone B D, Cohen M L 2013 Phys. Rev. B 88 064517

    [48]

    Allen P B 1972 Phys. Rev. B 6 2577

    [49]

    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855

    [50]

    Ding D, Qu Z, Han X, Han C, Zhuang Q, Yu X L, Niu R, Wang Z, Li Z, Gan Z 2022 Nano Lett. 22 7919

    [51]

    Pei Y L, Wu H, Wu D, Zheng F, He J 2014 J. Am. Chem. Soc. 136 13902

    [52]

    Liu Z, Liu Z, Zhuang Q, Ying J, Cui T 2024 npj Comput. Mater. 10 1

  • [1] 李昕语, 侯育花, 陈璇, 黄有林, 李伟, 陶小马. Ca-Co(Zn)共掺杂对M型锶铁氧体性能影响的第一性原理计算研究.  , doi: 10.7498/aps.74.20241626
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , doi: 10.7498/aps.73.20231436
    [3] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究.  , doi: 10.7498/aps.72.20221544
    [4] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , doi: 10.7498/aps.70.20202043
    [5] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究.  , doi: 10.7498/aps.70.20210227
    [6] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究.  , doi: 10.7498/aps.69.20200234
    [7] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算.  , doi: 10.7498/aps.68.20190158
    [8] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , doi: 10.7498/aps.68.20191258
    [9] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究.  , doi: 10.7498/aps.62.056105
    [10] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算.  , doi: 10.7498/aps.62.246301
    [11] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , doi: 10.7498/aps.62.083102
    [12] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究.  , doi: 10.7498/aps.61.226101
    [13] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质.  , doi: 10.7498/aps.60.077104
    [14] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究.  , doi: 10.7498/aps.60.117105
    [15] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , doi: 10.7498/aps.59.2051
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , doi: 10.7498/aps.59.515
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , doi: 10.7498/aps.57.2368
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , doi: 10.7498/aps.57.7794
    [19] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算.  , doi: 10.7498/aps.56.1598
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  47
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map