搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一阶艾里导数光束的艾里变换

陈嘉昊 高鸿飞 贺坚 王飞 周益民 徐一清 蔡阳健 周国泉

引用本文:
Citation:

一阶艾里导数光束的艾里变换

陈嘉昊, 高鸿飞, 贺坚, 王飞, 周益民, 徐一清, 蔡阳健, 周国泉

Airy transformation of Airyprime beam

CHEN Jiahao, GAO Hongfei, HE Jian, WANG Fei, ZHOU Yimin, XU Yiqing, CAI Yangjian, ZHOU Guoquan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 艾里变换是一种能实现高斯光束与艾里光束相互转换的神奇光学变换. 一阶艾里导数光束, 作为艾里光束的进阶型, 在经过艾里变换后会产生怎样的光束? 这就是本文所要研究的内容. 当艾里系数大于负的横向比例因子时, 一阶艾里导数光束的艾里变换在任意一个横向上的光场是偏心艾里光束和偏心一阶艾里导数光束之和. 当艾里系数等于负的横向比例因子时, 一阶艾里导数光束的艾里变换在任意一个横向上的光场是两个偏心优美厄米-高斯光束之和. 此外, 分别导出了一阶艾里导数光束经艾里变换后的质心和光束半宽在上述两种情形下的解析表达式. 最后, 实验上实现了一阶艾里导数光束的艾里变换, 并测量了艾里系数对光强分布、质心和光束半宽的影响. 一阶艾里导数光束艾里变换的研究拓宽了特殊形态分布光束的获取途径, 有望应用于光通信和分束技术等领域.
    As a remarkable optical transformation enabling mutual conversion between Gaussian and Airy beams, the Airy transformation raises intriguing questions when applied to Airyprime beam—an advanced variant of conventional Airy beam. To answer these questions, numerical simulations and experimental verification are combined in this study. The results show two different operation regimes: when the Airy coefficient exceeds the negative transverse scale factor, the Airy-transformed optical field of Airyprime beam in any transverse direction becomes equivalent to the superposition of eccentric Airy beam and eccentric Airyprime beam; when the Airy coefficient equals the negative transverse scale factor, the transformed optical field equivalently corresponds to the sum of two displaced elegant Hermite-Gaussian beams. Analytical expressions for centroid and beam half width under both regimes are rigorously derived and validated experimentally by using Airy transformation of Airyprime beams to systematically measure the influences of Airy coefficientson intensity distribution, centroid displacement, and beam half width. This investigation provides a novel method for generating complex beam profiles while enhancing the potential application value of such beams in optical communication and beam-splitting technology.
  • 图 1  艾里变换示意图

    Fig. 1.  A diagrammatic sketch of Airy transformation.

    图 2  一阶艾里导数光束经不同艾里变换后x方向上的归一化光强分布 (a) b = –0.50 mm; (b) b = –0.45 mm; (c) b = –0.40 mm; (d) b = –0.30 mm; (e) b = –0.20 mm; (f) b = –0.10 mm; (g) b = 0.00 mm; (h) b = 0.10 mm; (i) b = 0.20 mm

    Fig. 2.  Normalized light intensity distribution in the x-direction of an Airyprime beam after different Airy transformation: (a) b = –0.50 mm; (b) b = –0.45 mm; (c) b = –0.40 mm; (d) b = –0.30 mm; (e) b = –0.20 mm; (f) b = –0.10 mm; (g) b = 0.00 mm; (h) b = 0.10 mm; (i) b = 0.20 mm.

    图 3  偏心艾里光束、偏心一阶艾里导数光束和交叉项在x方向上的光强分布 (a)(c) b = 0.45 mm; (d)—(f) b = 0.20 mm; (g)(i) b = 0.20 mm

    Fig. 3.  Light intensity distribution in the x–direction of the eccentric Airy beam, the eccentric Airyprime beam, and the cross term: (a)—(c) b = –0.45 mm; (d)—(f) b = –0.20 mm; (g)—(i) b = 0.20 mm.

    图 4  一阶艾里导数光束经不同艾里变换后的二维归一化光强分布 (a) b = c = 0.50 mm; (b) b = c = 0.45 mm; (c) b = c = 0.40 mm; (d) b = c = 0.30 mm; (e) b = c = 0.20 mm; (f) b = c = 0.10 mm; (g) b = c = 0.00 mm; (h) b = c = 0.10 mm; (i) b = c = 0.20 mm

    Fig. 4.  Two-dimensional normalized intensity distribution of an Airyprime beam after different Airy transformation: (a) b = c = 0.50 mm; (b) b = c = 0.45 mm; (c) b = c = 0.40 mm; (d) b = c = 0.30 mm; (e) b = c = 0.20 mm; (f) b = c = 0.10 mm; (g) b = c = 0.00 mm; (h) b = c = 0.10 mm; (i) b = c = 0.20 mm.

    图 5  艾里系数b对一阶艾里导数光束经艾里变换后x方向上的质心(a)和光束半宽(b)的影响

    Fig. 5.  Effect of the Airy coefficient b on the centroid (a) and the beam half width (b) in the x-direction of an Airyprime beam after Airy transformation.

    图 6  一阶艾里导数光束艾里变换的实验装置示意图

    Fig. 6.  Experimental setup of the Airy transformation of an Airyprime beam.

    图 7  (a) 用于产生一阶艾里导数光束的相位光栅; (b) 上传到SLM2的立方相位图

    Fig. 7.  (a) Phase grating for generation of an Airyprime beam; (b) cubic phase pattern uploaded onto SLM2.

    图 8  一阶艾里导数光束经不同艾里变换后二维光强分布的实验记录 (a) b = c = 0.50 mm; (b) b = c = 0.45 mm; (c) b = c = 0.40 mm; (d) b = c = 0.30 mm; (e) b = c = 0.20 mm; (f) b = c = 0.10 mm; (g) b = c = 0.00 mm; (h) b = c = 0.10 mm; (i) b = c = 0.20 mm

    Fig. 8.  Experimental record of two-dimensional intensity profile of an Airyprime beam after different Airy transformation: (a) b = c = 0.50 mm; (b) b = c = 0.45 mm; (c) b = c = 0.40 mm; (d) b = c = 0.30 mm; (e) b = c = 0.20 mm; (f) b = c = 0.10 mm; (g) b = c = 0.00 mm; (h) b = c = 0.10 mm; (i) b = c = 0.20 mm.

    图 9  艾里系数b对一阶艾里导数光束经艾里变换后x方向上的质心(a)和光束半宽(b)影响的实验测量

    Fig. 9.  Experimental measurement of the effect of the Airy coefficient b on the centroid (a) and the beam half width (b) in the x-direction of an Airyprime beam after Airy transformation.

    Baidu
  • [1]

    Zang X, Dan W S, Zhou Y M, Lv H, Wang F, Cai Y J, Zhou G Q 2022 Opt. Express 30 3804Google Scholar

    [2]

    Kumari A, Dev V, Pal V 2024 Opt. Laser Technol. 168 109387

    [3]

    Yu J, Wang Y P, Bai Z Y, Wu L P, Fu C L, Liu S, Liu Y 2023 Opt. Express 31 11053Google Scholar

    [4]

    Yu J, Tong S D, Long H H, Bai Z Y, Wu L P, Liu Y 2024 Opt. Express 32 6178Google Scholar

    [5]

    Dan W S, Zang X, Wang F, Zhou Y M, Xu Y Q, Chen R P, Zhou G Q 2022 Opt. Express 30 32704Google Scholar

    [6]

    Chen Z, Peng S Y, Zhang Z H, Liu J L, Meng Yang 2024 Opt. Lett. 49 6453Google Scholar

    [7]

    Chen D H, Mo Z W, Liang Z H, Jiang J J, Tang H L, Sun Y D, Wang Z Y, Wei Q F, Chen Y R, Deng D M 2024 Opt. Commun. 554 130109Google Scholar

    [8]

    Zhao S K, Li J C, Li T Q, Huang X W, Bai Y F, Fu X Q 2024 Laser Phys. 34 095001Google Scholar

    [9]

    Zhao S K, Huang X W, Bai Y F, Fu X Q 2024 Chaos, Solitons Fractals 187 115480Google Scholar

    [10]

    Zhou Y M, Zang X, Dan W S, Wang F, Chen R P, Zhou G Q 2023 Opt. Laser Technol. 162 109303Google Scholar

    [11]

    Zang X, Dan W S, Wang F, Zhou Y M, Cai Y J, Zhou G Q 2022 Opt. Lett. 47 5654Google Scholar

    [12]

    Zang X, Dan W S, Zhou Y M, Wang F, Cai Y J, Zhou G Q 2023 Opt. Lett. 48 912Google Scholar

    [13]

    Wang W X, Mi Z W, Zhang L P, Wang B Y, Han K Z, Lei C X, Man Z S, Ge X L 2023 Opt. Commun. 549 129879Google Scholar

    [14]

    Yang S, Yu P X, Wu J W, Zhang X, Xu Z, Man Z S, Ge X L, Fu S G, Lei C X, Chen C D, Deng D M, Zhang L P 2023 Opt. Express 31 35685Google Scholar

    [15]

    Zhang L P, Yang S, Li S Y, Man Z S, Ge X L, Lei C X, He S, Zhang W F, Deng D M, Chen C D 2024 Chaos, Solitons Fractals 181 114506Google Scholar

    [16]

    He J, Dan W S, Zang X, Zhou Y M, Wang F, Cai Y J, Zhou G Q 2024 Opt. Laser Technol. 168 109932Google Scholar

    [17]

    Zang X, Wang F, Dan W S, Zhou Y, M Zhou G Q 2022 Opt. Laser Technol. 155 108398Google Scholar

    [18]

    Chen C D, Zhang L P, Yang S, Li S Y, Deng D M 2024 Opt. Lett. 49 268

    [19]

    Zheng X Q, Yang Y Z, Liu Y J, Lin X J, Liang Z H, Liu J, Deng D M 2024 Opt. Lett. 49 4393Google Scholar

    [20]

    Jiang Y F, Huang K K, Lu X H 2012 Opt. Commun. 285 4840Google Scholar

    [21]

    Jiang Y F, Huang K K, Lu X H 2012 J. Opt. Soc. Am. A: 29 1412Google Scholar

    [22]

    Ez-zariy L, Boufalah F, Dalil-Essakali L, Belafhal A 2018 Optik 171 501Google Scholar

    [23]

    Yaalou M, El Halba E M, Hricha Z, Belafhal A 2019 Opt. Quantum Electron. 51 64Google Scholar

    [24]

    Yaalou M, Hricha Z, El Halba E M, Belafhal A 2019 Opt. Quantum Electron. 51 308Google Scholar

    [25]

    Yaalou M, Hricha Z, Lazrek M, Belafhal A 2020 J. Mod. Opt. 67 771Google Scholar

    [26]

    Yaalou M, Hricha Z, Belafhal A 2020 Opt. Quantum Electron. 52 165Google Scholar

    [27]

    Yaalou M, Hricha Z, Belafhal A 2020 Opt. Quantum Electron. 52 461Google Scholar

    [28]

    Chu X C, Liu R J, Wang X, Han Z X, Ni Y H 2021 Opt. Appl. 51 473

    [29]

    Zhang Q, Liu Z R, Wang X 2022 Results Phys. 35 105389Google Scholar

    [30]

    Huang H Q, Wu Y, Lin Z J, Xu D L, Jiang J J, Mo Z W, Yang H B, Deng D M 2022 Waves Random Complex Medium DOI10.1080/17455030.2022. 2066222

    [31]

    Zhang Q, Liu Z R, Wang X 2022 Phys. Scr. 97 115502Google Scholar

    [32]

    Zhang Q, Liu Z R, Wang X 2022 Optik 251 168477Google Scholar

    [33]

    Tang H L, Fan Z J, Ouyang S G, Mo Z W, Xu D L, Huang H Y, Deng D M 2023 Results Phys. 50 106552Google Scholar

    [34]

    Lin Q D, Zhang H, Hu Z Q, Lu X, Lu X Y, Cai Y J, Zhao C L 2023 Photonics 10 974Google Scholar

    [35]

    Yaalou M, Hricha Z, Belafhal A 2023 Opt. Quantum Electron. 55 875Google Scholar

    [36]

    Yaalou M, Hricha Z, Belafhal A 2023 Opt. Quantum Electron. 55 138Google Scholar

    [37]

    Gradshteyn I S, Ryzhik I M 1980 Table of integrals, series, and products (New York: Academic Press

    [38]

    Vallée O, Manuel S 2010 Airy Functions and Applications to Physics (London: Imperial College Press).

    [39]

    Martínez-Herrero R, Mejías P M 1993 Opt. Lett. 18 1669Google Scholar

    [40]

    Nemes G, Serna J 1998 OSA TOPS 17 200

    [41]

    Mei Z R, Zhao D M 2005 Appl. Opt. 44 1381Google Scholar

    [42]

    Deng D M 2005 Phys. Lett. A 341 352Google Scholar

    [43]

    刘飞, 季小玲 2011 60 014216Google Scholar

    Liu F, Ji X L 2011 Acta Phys. Sin. 60 014216Google Scholar

    [44]

    余佳益, 陈亚红, 蔡阳健 2016 65 214202Google Scholar

    Yu J Y, Chen Y H, Cai Y J 2016 Acta Phys. Sin. 65 214202Google Scholar

    [45]

    Mihoubi K, Bencheikh A, Manallah A 2018 Opt. Laser. Technol. 9 191

  • [1] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针.  , doi: 10.7498/aps.73.20240878
    [2] 宁啸坤, 耿滔. 频谱非对称包络调制的圆对称艾里光束的传播特性研究.  , doi: 10.7498/aps.71.20220019
    [3] 张霞萍. 自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用.  , doi: 10.7498/aps.69.20191272
    [4] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法.  , doi: 10.7498/aps.69.20191088
    [5] 陈卫军, 宋德, 李野, 王新, 秦旭磊, 刘春阳. 竞争型非线性介质中艾里-高斯光束交互作用的调控.  , doi: 10.7498/aps.68.20190042
    [6] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生.  , doi: 10.7498/aps.65.204204
    [7] 龚宁, 朱开成, 夏辉. 四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生.  , doi: 10.7498/aps.65.124204
    [8] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍. 拉曼增益和自陡峭效应对艾里脉冲传输特性的影响.  , doi: 10.7498/aps.65.074204
    [9] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍, 门克内木乐. 在反常色散区艾里脉冲与光孤子相互作用规律的研究.  , doi: 10.7498/aps.65.024208
    [10] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用.  , doi: 10.7498/aps.65.244202
    [11] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生.  , doi: 10.7498/aps.63.104210
    [12] 罗朝明, 陈世祯, 凌晓辉, 张进, 罗海陆. 高阶邦加球上柱矢量光束的变换.  , doi: 10.7498/aps.63.154203
    [13] 张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚. 多艾里光束合成自聚焦光束的实验实现.  , doi: 10.7498/aps.62.034209
    [14] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法.  , doi: 10.7498/aps.62.070201
    [15] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究.  , doi: 10.7498/aps.61.174207
    [16] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究.  , doi: 10.7498/aps.60.114203
    [17] 杨爱林, 李晋红, 吕百达. 大气湍流中光束束宽扩展和角扩展的比较研究.  , doi: 10.7498/aps.58.2451
    [18] 吴 平, 吕百达, 陈天禄. 光束分数傅里叶变换的Wigner分布函数分析方法.  , doi: 10.7498/aps.54.658
    [19] 邹其徽, 吕百达. 等束宽超短脉冲光束的远场特性.  , doi: 10.7498/aps.54.5642
    [20] 肖 峻, 吕百达, 张 彬. 随机位相板对激光束的变换特性.  , doi: 10.7498/aps.48.1891
计量
  • 文章访问数:  222
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-07
  • 修回日期:  2025-03-23
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map