搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四端双量子点系统中的自旋和电荷能斯特效应

郑军 李春雷 杨曦 郭永

引用本文:
Citation:

四端双量子点系统中的自旋和电荷能斯特效应

郑军, 李春雷, 杨曦, 郭永

Spin and charge Nernst effect in a four-terminal double quantum dot system

Zheng Jun, Li Chun-Lei, Yang Xi, Guo Yong
PDF
导出引用
  • 基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.
    With the increase of integration scale, heat dissipation becomes one of the major problems in high density electronic devices and circuits. Controlling and reusing the heat energy in such miniaturized structures are essential topics for current and future technologies. With the development of microfabrication technology and low-temperature measurement technology in the last two decades, the thermoelectric measurement in low-dimensional sample has been feasible, and the thermal transport has received more and more attention. For the multi-terminal device, there is a novel thermoelectric phenomenon, called the spin Nernst effect, in which spin currents (or spin voltages) are generated perpendicularly to the temperature gradient. The spin Nernst effect has been confirmed experimentally, and has been theoretically studied in a variety of materials. In this paper, the spin and charge Nernst effect in a pair of vertically aligned quantum dots attached to four leads are studied in the Coulomb blockade regime based on the nonequilibrium Green's function technique. We focus on the influences of magnetic configuration and intra-dot (inter-dot) Coulomb interaction on the spin and charge Nernst effect. It is found that the signs and the magnitudes of spin and charge Nernst effect can be modulated by adjusting the magnetization directions of ferromagnetic electrodes. When the magnetic moments in the 1 and 3 electrodes are turned to antiparallel alignment, the pure spin Nernst (without charge Nernst) effect can occur by applying a transverse temperature gradient. Conversely, the spin and charge Nernst effect disappear if the magnetic moments of lead 1 and lead 3 are in the case of parallel configuration. Except for left and right thermal leads, we investigate the effect of the middle lead (lead 4) on the property of the Nernst effect. We find that when the normal metal lead 4 is transferred to ferromagnetic metal, the spin and charge Nernst effect both can be obtained simultaneously. In the end of the paper, we study the influences of intra-dot and inter-dot Coulomb interaction on the spin dependent Nernst coefficient. Through numerical calculations, we demonstrate that the magnitude of the Nernst effect is less dependent on the polarization strength of ferromagnetic electrodes, but can be remarkably enhanced by the Coulomb blockade. The spin Nernst coefficient is predicted to be more than two orders of magnitude larger than that of the case of zero Coulomb interaction. All the results indicate that the proposed four-terminal double quantum dot nano system is a promising candidate for spin caloritronic device.
      通信作者: 郑军, zhengjun@bhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11547209,11604021,11574173)、辽宁省博士科研启动基金指导计划(批准号:201601352)、低维量子物理国家重点实验室开放课题(批准号:KF201613)和北京市教育委员会科技计划一般项目(批准号:KM201410028021)资助的课题.
      Corresponding author: Zheng Jun, zhengjun@bhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547209, 11604021, 11574173), the Doctoral Scientific Research Foundation of Liaoning Province, China (Grant No. 201601352), the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201613), and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (Grant No. KM201410028021).
    [1]

    Dubi Y, Di Ventra M 2011 Rev. Mod. Phys. 83 131

    [2]

    Scheibner R, Buhmann H, Reuter D, Kiselev M N, Molenkamp L W 2005 Phys. Rev. Lett. 95 176602

    [3]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 64 186302]

    [4]

    Xu Z A, Shen J Q, Zhao S R, Zhang Y J, Ong C K 2005 Phys. Rev. B 72 144527

    [5]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Phys. Rev. Lett. 93 226601

    [6]

    Banerjee A, Fauque B, Izawa K, Miyake A, Sheikin I, Flouquet J, Lenoir B, Behnia K 2008 Phys. Rev. B 78 161103

    [7]

    Small J P, Perez K M, Kim P 2003 Phys. Rev. Lett. 91 256801

    [8]

    Scheibner R, Buhmann H, Reuter D, Kiselev M N, Molenkamp L W 2005 Phys. Rev. Lett. 95 176602

    [9]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [10]

    Guo Y, Gu B L, Yoshiyuki K 2000 Acta Phys. Sin. 49 1814 (in Chinese) [郭永, 顾秉林, 川添良幸 2000 49 1814]

    [11]

    Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J, Takanashi K 2008 Nature Mater. 7 125

    [12]

    Checkelsky J G, Ong N P 2009 Phys. Rev. B 80 081413

    [13]

    Cyr-Choiniere O, Daou R, Laliberte F, LeBoeuf D, Doiron-Leyraud N, Chang J, Yan J Q, Cheng J G, Zhou J S, Goodenough J B, Pyon S, Takayama T, Takagi H, Tanaka Y, Taillefer L 2009 Nature 458 743

    [14]

    Tauber K, Gradhand M, Fedorov D V, Mertig I 2012 Phys. Rev. Lett. 109 026601

    [15]

    Cheng S G, Xing Y X, Sun Q F, Xie X C 2008 Phys. Rev. B 78 045302

    [16]

    Bulka B R, Kostyrko T 2004 Phys. Rev. B 70 205333

    [17]

    Sun Q F, Xing Y X, Shen S Q 2008 Phys. Rev. B 77 195313

    [18]

    Jonson M, Girvin S M 1984 Phys. Rev. B 29 1939

    [19]

    Oji H, Streda P 1985 Phys. Rev. B 31 7291

    [20]

    Sun Q F, Xie X C 2006 Phys. Rev. B 73 235301

  • [1]

    Dubi Y, Di Ventra M 2011 Rev. Mod. Phys. 83 131

    [2]

    Scheibner R, Buhmann H, Reuter D, Kiselev M N, Molenkamp L W 2005 Phys. Rev. Lett. 95 176602

    [3]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 64 186302]

    [4]

    Xu Z A, Shen J Q, Zhao S R, Zhang Y J, Ong C K 2005 Phys. Rev. B 72 144527

    [5]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Phys. Rev. Lett. 93 226601

    [6]

    Banerjee A, Fauque B, Izawa K, Miyake A, Sheikin I, Flouquet J, Lenoir B, Behnia K 2008 Phys. Rev. B 78 161103

    [7]

    Small J P, Perez K M, Kim P 2003 Phys. Rev. Lett. 91 256801

    [8]

    Scheibner R, Buhmann H, Reuter D, Kiselev M N, Molenkamp L W 2005 Phys. Rev. Lett. 95 176602

    [9]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [10]

    Guo Y, Gu B L, Yoshiyuki K 2000 Acta Phys. Sin. 49 1814 (in Chinese) [郭永, 顾秉林, 川添良幸 2000 49 1814]

    [11]

    Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J, Takanashi K 2008 Nature Mater. 7 125

    [12]

    Checkelsky J G, Ong N P 2009 Phys. Rev. B 80 081413

    [13]

    Cyr-Choiniere O, Daou R, Laliberte F, LeBoeuf D, Doiron-Leyraud N, Chang J, Yan J Q, Cheng J G, Zhou J S, Goodenough J B, Pyon S, Takayama T, Takagi H, Tanaka Y, Taillefer L 2009 Nature 458 743

    [14]

    Tauber K, Gradhand M, Fedorov D V, Mertig I 2012 Phys. Rev. Lett. 109 026601

    [15]

    Cheng S G, Xing Y X, Sun Q F, Xie X C 2008 Phys. Rev. B 78 045302

    [16]

    Bulka B R, Kostyrko T 2004 Phys. Rev. B 70 205333

    [17]

    Sun Q F, Xing Y X, Shen S Q 2008 Phys. Rev. B 77 195313

    [18]

    Jonson M, Girvin S M 1984 Phys. Rev. B 29 1939

    [19]

    Oji H, Streda P 1985 Phys. Rev. B 31 7291

    [20]

    Sun Q F, Xie X C 2006 Phys. Rev. B 73 235301

  • [1] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性.  , 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [2] 白旭芳, 赵玉伟, 尹洪武, 额尔敦朝鲁. 氢化杂质和厚度效应对高斯势量子点中二能级体系量子跃迁的影响.  , 2018, 67(17): 177801. doi: 10.7498/aps.67.20180341
    [3] 程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响.  , 2017, 66(13): 137802. doi: 10.7498/aps.66.137802
    [4] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响.  , 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [5] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究.  , 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [6] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究.  , 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [7] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算.  , 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [8] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控.  , 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [9] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响.  , 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [10] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性.  , 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [11] 姚建明, 杨翀. AB效应对自旋多端输运的影响.  , 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [12] 李桂琴, 蔡军. graphene量子点的起伏效应对尺寸的敏感性研究.  , 2009, 58(9): 6453-6458. doi: 10.7498/aps.58.6453
    [13] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应.  , 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [14] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响.  , 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [15] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应.  , 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [16] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究.  , 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [17] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构.  , 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [18] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算.  , 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [19] 邢永忠, 刘建业, 郭文军, 郝焕锋. 中能重离子碰撞中库仑相互作用对动量耗散的同位旋效应.  , 2005, 54(4): 1538-1542. doi: 10.7498/aps.54.1538
    [20] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响.  , 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
计量
  • 文章访问数:  6163
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-20
  • 修回日期:  2017-01-20
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map