搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导约瑟夫森结技术及应用于液氮温区量子电压标准的可能性

陈紫雯 朱珠 康焱 焦玉民 张力丹 张焱 马平

引用本文:
Citation:

高温超导约瑟夫森结技术及应用于液氮温区量子电压标准的可能性

陈紫雯, 朱珠, 康焱, 焦玉民, 张力丹, 张焱, 马平

The fabrication technique of high-temperature superconducting Josephson junctions and the possibility of its application in quantum voltage standards working at liquid nitrogen temperatures

CHEN Zi-Wen, ZHU Zhu, KANG Yan, JIAO Yu-Min, ZHANG Li-Dan, ZHANG Yan, MA Ping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文对液氮温区约瑟夫森电压标准的物理原理、相关应用研究的发展历史、研究现状以及未来发展方向进行了综述。液氮温区工作的约瑟夫森电压标准具有移动性强、能耗小等特点,便于应用推广。本文描述了目前约瑟夫森量子电压标准的研究现状,重点探讨了基于高温超导体发展液氮温区量子电压标准可能性,以及目前在芯片制备方面存在的各种挑战。在此基础上,介绍了超导约瑟夫森结阵列的一种新型制备技术,即聚焦氦离子辐照技术,其在高一致性约瑟夫森结阵列的制备上可能具有优势,是未来探索实现液氮温区量子电压计量标准的一种可能技术路线。
    This paper reviews the physics principle, development history of related application research, current research status and perspectives of the Josephson voltage standard (JVS) working at liquid helium temperatures. JVS working at liquid helium temperature has advantages of high mobility and low energy consuming, and has a broad application prospect. This article describes the research status of Josephson voltage standards, focusing on the possibility of developing a JVS based on high-temperature superconductors, as well as the challenges in chip fabrication. In addition, a newly developed Josephson junction fabrication technique, namely the Focused Helium Ion Beam (FHIB), has been introduced, which may have advantages in the preparation of junction arrays in high consistency, and is a possible technical route for exploring the realization of JVS working at liquid helium temperature in the future.
  • [1]

    Josephson B D 1962Phys. Lett. 1 251

    [2]

    Clarke J, Braginski A I. 2003The SQUID handbook(Weinheim:Wiley-VCH) Volume II. ed.

    [3]

    Hamilton C A 2000Rev. Sci. Instrum. 71 3611

    [4]

    Kohlmann J, Behr R, Funck T 2003Meas. Sci. Technol. 14 1216

    [5]

    Shapiro S 1963Phys. Rev. Lett. 11 80

    [6]

    Klushin A M, Lesueur J, Kampik M, Raso F, Sosso A, Khorshev S K, Bergeal N, Couëdo F, Feuillet-Palma C, Durandetto P, Grzenik M, Kubiczek K, Musiol K, Skorkowski A 2020IEEE Instrum. Meas. Mag. 23 4

    [7]

    Mccumber D E 1968J. Appl. Phys. 39 3113

    [8]

    Jain A K, Lukens J E, Tsai J S 1987Phys. Rev. Lett. 58 1165

    [9]

    Degennes P G 1964Rev. Mod. Phys. 36 225

    [10]

    Primary Voltage Standard Josephson Junction Arrays, Hypres https://www.hypres.com/products/[2024-8-7]

    [11]

    Schulze H, Behr R, Muller F, Niemeyer J 1998Appl. Phys. Lett. 73 996

    [12]

    Schulze H, Behr R, Kohlmann J, Müller F, Niemeyer J 2000Supercond. Sci. Technol. 13 1293

    [13]

    Zhong Q, Zhong Y, He Q, Zhang J 2008Cryogenics and Superconductivity 36 32

    [14]

    SRI 6000 Series Programmable Josephson Voltage Standard (PJVS), NIST https://www.nist.gov/sri/standard-reference-instruments/[2024-8-7]

    [15]

    AC Quantum Voltmeter Cooler, Supracon http://www.supracon.com/en/[2024-8-7]

    [16]

    Rüfenacht A, Flowers-Jacobs N E, Benz S P 2018Metrologia 55 S152

    [17]

    Dresselhaus P D, Elsbury M M, Olaya D, Burroughs C J, Benz S P 2011IEEE Trans. Appl. Supercond. 21 693

    [18]

    Mueller F, Behr R, Weimann T, Palafox L, Olaya D, Dresselhaus P D, Benz S P 2009IEEE Trans. Appl. Supercond. 19 981

    [19]

    Yamamori H, Ishizaki M, Shoji A, Dresselhaus P D, Benz S P 2006Appl. Phys. Lett. 88 042503

    [20]

    Cao W W, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012Acta Phys. Sin. 6128(in Chinese)[曹文会,李劲劲,钟青,郭小玮,贺青,迟宗涛2012 61 28]

    [21]

    Cao W H, Li J J, Zhong Y, He Q 2015Chin. Phys. B 24 127402

    [22]

    Yu H F, Cao W H, Zhu X B, Yang H F, Yu H W, Ren Y F, Gu C Z, Chen G H, Zhao S P 2008Chin. Phys. B 17 3083

    [23]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009Chin. Phys. B 18 5044

    [24]

    Xu W N, Ying L L, Lin Q, Ren J, Wang Z 2021Supercond. Sci. Technol. 34 085002

    [25]

    Li X, Tan J R, Zheng K M, Zhang L B, Zhang L J, He W J, Huang P W, Li H C, Zhang B, Chen Q, Ge R, Guo S Y, Huang T, Jia X Q, Zha Q Y, Tu X C, Kang L, Chen J, Wu P H 2020Photonics Res. 8 637

    [26]

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren J, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021Acta Phys. Sin. 70 178(in Chinese)[李春光,王佳,吴云,王旭,孙亮,董慧,高波,李浩,尤立星,林志荣,任洁,李婧,张文,贺青,王轶文,韦联福,孙汉聪,王华兵,李劲劲,屈继峰2021 70 178]

    [27]

    Li J J 2021Management and Research on Scientific& Technological Achievements 16 72(in Chinese)[李劲劲2021科技成果管理与研究16 72]

    [28]

    Zhu Z, Kang Y, Wang L, Hu Y F 2018Journal of Astronautic Metrology and Measurement. 38 12(in Chinese)[朱珠,康焱,王路,胡毅飞2018宇航计测技术38 12]

    [29]

    Li H H, Wang Z M, Xu Q, Tian Z Q, Duan M M, Wang L 2023Acta. Metrol. Sin. 44 1564(in Chinese)[李红晖,王曾敏,徐晴,田正其,段梅梅,王磊2023计量学报44 1564]

    [30]

    Trinchera B, Durandetto P, Serazio D 2024Measurement 233 114747

    [31]

    Duan M M, Zhao S S, Xu Q, Wang L, Jia Z S, Huang H T, Pan X L 2022 Electrical Measurement& Instrumentation 59 100(in Chinese)[段梅梅,赵双双,徐晴,王磊,贾正森,黄洪涛,潘仙林2022电测与仪表59 100]

    [32]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987Phys. Rev. Lett. 58 908

    [33]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987Science Bulletin 32412(in Chinese)[赵忠贤,陈立泉,杨乾声,黄玉珍,陈赓华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清1987科学通报32412]

    [34]

    Hilgenkamp H, Mannhart J 2002Rev. Mod. Phys. 74 485

    [35]

    Hamilton C A, Burroughs C J, Benz S P, Kinard J R 1997IEEE Trans. Instrum. Meas. 46 224

    [36]

    Nam S, Benz S, Dresselhaus P, Tew W L, White D R, Martinis J M, 2002Proceedings of the 2002 conference on precision electromagnetic measurements, Canada, Jun 16-21, 2002 p438

    [37]

    Chaudhari P, Mannhart J, Dimos D, Tsuei C C, Chi J, Oprysko M M, Scheuermann M 1988Phys. Rev. Lett. 60 1653

    [38]

    Klushin A M, Prusseit W, Sodtke E, Borovitskii S I, Amatuni L E, Kohlstedt H 1996Appl. Phys. Lett. 69 1634

    [39]

    Klushin A M, Weber C, Darula M, Semerad R, Prusseit W, Kohlstedt H, Braginski A I 1998Supercond. Sci. Technol. 11 609

    [40]

    Klushin A M, Behr R, Numssen K, Siegel M, Niemeyer J 2002Appl. Phys. Lett. 80 1972

    [41]

    Khorshev S K, Pashkovsky A I, Subbotin A N, Rogozhkina N V, Gryaznov Y M, Levichev M Y, Pestov E E, Galin M A, Maksimov V Y, Zhezlov D A, Katkov A S, Klushin A M 2019IEEE Trans. Instrum. Meas. 68 2113

    [42]

    Klushin A M, Pestov E E, Galin M A, Levichev M Y 2016Phys. Solid State 58 2196

    [43]

    Khorshev S K, Pashkovsky A I, Rogozhkina N V, Levichev M Y, Pestov E E, Katkov A S, Behr R, Kohlmann J, Klushin A M, 2016Proceedings of the Conference on Precision Electromagnetic Measurements (CPEM), Ottawa, CANADA, Jul 10-15, 2016

    [44]

    Jin, Y R, Jia, Q J, Deng H, Wang N, Jiang F Y, Tian Y, Gao M Y, Zheng D N 2015IEEE Trans. Appl. Supercond. 25 1

    [45]

    Linghu K, Guo Z, Wu Q, Luo W, Nie R, Jin Y, Zheng D, Wang F, Gan Z 2019IEEE Trans. Appl. Supercond. 29 1

    [46]

    Li Y L, Xu T Q, Wang Y, Wang F R, Gan Z Z 2023Sensors 23 4434

    [47]

    Ma P, Yao K, Xie F X, Zhang S Y, Deng P, He D F, Zhang F, Liu L Y, Nie R J, Wang F R, Wang S Z, Dai Y D 2002Acta Phys. Sin. 51 224(in Chinese)[马平,姚坤,谢飞翔,张升原,邓鹏,何东风,张凡,刘乐园,聂瑞娟,王福仁,王守证,戴远东2002 51 224]

    [48]

    Liu X Y, Xie B Q, Dai Y D, Wang F R, Li Z Z, Ma P, Xie F X, Yang T, Nie R J 2005Acta Phys. Sin. 54 1937(in Chinese)[刘新元,谢柏青,戴远东,王福仁,李壮志,马平,谢飞翔,杨涛,聂瑞娟2005 54 1937]

    [49]

    Wang Q, Ma P, Hua N, Lu H,Tang X Z, Tang F K 2010Acta Phys. Sin. 2882(in Chinese)[王倩,马平,华宁,陆宏,唐雪正,唐发宽2010 2882]

    [50]

    Yu M, Geng H F, Hua T, An D Y, Xu W W, Chen Z N, Chen J, Wang H B, Wu P H 2020Supercond. Sci. Technol. 33 025001

    [51]

    You L X, Feng Y J, Pan J, Ji Z M, Zhou G D, Kang L, Zuo J P, Yang S Z, Wu P H, Chen G X, Wang M J. 1999 Low Temp. Phys. 21 372(in Chinese)[尤立星,冯一军,潘俊,吉争鸣,周赣东,康琳,左景萍,杨森祖,吴培亨,陈国新,王牧1999低温 21 372]

    [52]

    Wang Z, Yue H W, Zhou T G, Zhao X J, He M, Xie Q L, Fang L, Yan S L 2009Acta Phys. Sin. 58 7216(in Chinese)[王争,岳宏卫,周铁戈,赵新杰,何明,谢清连,方兰,阎少林2009 58 7216]

    [53]

    Wang H B, Xu W W, Wu P H 2017Physics 46 528(in Chinese)[王华兵,许伟伟,吴培亨2017物理46 528]

    [54]

    Dai Y D, Gao J, Ma P 2007 Acta Phys. Sin. 36 869(in Chinese)[戴远东,高吉,马平2007 36 869]

    [55]

    Zhang J, Zhang C, Zhang Y, Ma P, Wang Y 2015Chin. J. Low Temp. Phys. 37 423(in Chinese)[张骏,张辰,张焱,马平,王越低温 37 423]

    [56]

    Xu T Q, Li Y L, Wang H Z, Wang Y, Wang F R, Gan Z Z 2023Phys. C 615 1354390

    [57]

    Klushin A M, Weber C, Borovitskii S I, Starodubrovskii R K, Lauer A, Wolff I, Kohlstedt H 1999IEEE Trans. Instrum. Meas. 48 274

    [58]

    Rao C N R, Raveau B 1989Acc. Chem. Res. 22 106

    [59]

    Hao L, Macfarlane J C, Pegrum C M 1996Supercond. Sci. Technol. 9 678

    [60]

    Hao L, Macfarlane J C 1997Phys. C 292 315

    [61]

    Mcdaniel E B, Gausepohl S C, Li C T, Lee M, Hsu J W P, Rao R A, Eom C B 1997Appl. Phys. Lett. 70 1882

    [62]

    Klushin A M, Borovitskii S I, Weber C, Sodtke E, Semerad R, Prusseit W, Gelikonova V D, Kohlstedt H, 19973rd European Conference on Applied Superconductivity (EUCAS), Veldhoven, Netherlands, Jun 30-Jul 03, 1997 p587

    [63]

    Tinchev S S 1990Supercond. Sci. Technol. 3 500

    [64]

    Simon R W, Bulman J B, Burch J F, Coons S B, Daly K P, Dozier W D, Hu R, Lee A E, Luine J A, Platt C E, Schwarzbek S M, Wire M S, Zani M J 1991IEEE Trans. Magn. 27 3209

    [65]

    Kang D J, Burnell G, Lloyd S J, Speaks R S, Peng N H, Jeynes C, Webb R, Yun J H, Moon S H, Oh B, Tarte E J, Moore D F, Blamire M G 2002Appl. Phys. Lett. 80 814

    [66]

    Cybart S A, Chen K, Cui Y, Li Q, Xi X X, Dynes R C 2006Appl. Phys. Lett. 88 012509

    [67]

    Sharafiev A, Malnou M, Feuillet-Palma C, Ulysse C, Wolf T, Couëdo F, Febvre P, Lesueur J, Bergeal N 2018Supercond. Sci. Technol. 31 035003

    [68]

    Cybart S A, Anton S M, Wu S M, Clarke J, Dynes R C 2009Nano Lett. 9 3581

    [69]

    Chen Z W, Li Y L, Zhu R, Xu J, Xu T Q, Yin D L, Cai X W, Wang Y, Lu J M, Zhang Y, Ma P 2022Chin. Phys. Lett. 39 077402

    [70]

    Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C, Dynes R C 2015Nat. Nanotechnol. 10 598

    [71]

    Cho E Y, Zhou Y W, Cho J Y, Cybart S A 2018Appl. Phys. Lett. 113 022604

    [72]

    Cai H, Lefebvre J C, Li H, Cho E Y, Yoshikawa N, Cybart S A 2024Appl. Phys. Lett. 124 212601

    [73]

    Li H, Cai H, Sarkar N, Lefebvre J C, Cho E Y, Cybart S A 2024Appl. Phys. Lett. 124 192603

    [74]

    Lefebvre J C, Cho E Y, Cybart S A 2023Appl. Phys. Lett. 123 112602

    [75]

    Goteti U S, Cai H, Lefebvre J C, Cybart S A, Dynes R C 2022Sci. Adv. 8 eabn4485

    [76]

    Cai H, Li H, Cho E Y, Lefebvre J C, Cybart S A 2021IEEE Trans. Appl. Supercond. 31 7200205

    [77]

    Elswick D, Ananth M, Stern L, Marshman J, Ferranti D, Huynh C 2013Microscopy and microanalysis 19 1304

    [78]

    Zaluzhnyy I A, Goteti U, Stoychev B K, Basak R, Lamb E S, Kisiel E, Zhou T, Cai Z, Holt M V, Beeman J W, Cho E Y, Cybart S, Shpyrko O G, Dynes R, Frano A 2024ACS Appl. Nano Mater. 7 15943

    [79]

    Graser S, Hirschfeld P J, Kopp T, Gutser R, Andersen B M, Mannhart J 2010Nat. Phys. 6 609

    [80]

    Yin D L, Cai X W, Xu T Q, Sun R N, Chen Z W, Han Y, Tian L F, Wang Y, Zhang Y, Gan Z Z 2024Phys. C 623 1354532

    [81]

    Chen Z W, Zhang Y, Ma P, Xu Z T, Li Y L, Wang Y, Lu J M, Ma Y W, Gan Z Z 2024Chin. Phys. B 33

    [82]

    Wang X, Chen F, Lin Z, Tian S, Li C, Kornev V, Kolotinskiy N 2024Electromagnetic Science 2 1

    [83]

    Kasaei L, Melbourne T, Li M J, Manichev V, Qin F, Hijazi H, Feldman L C, Gustafsson T, Davidson B A, Xi X X, Chen K 2019IEEE Trans. Appl. Supercond. 29 1102906

    [84]

    Karrer M, Wurster K, Linek J, Meichsner M, Kleiner R, Goldobin E, Koelle D 2024Phys. Rev. Appl. 21 014065

  • [1] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应.  , doi: 10.7498/aps.72.20231815
    [2] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力. 马约拉纳零能模的输运探测.  , doi: 10.7498/aps.72.20230951
    [3] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应.  , doi: 10.7498/aps.72.20230397
    [4] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算.  , doi: 10.7498/aps.70.20210393
    [5] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介.  , doi: 10.7498/aps.70.20201881
    [6] 金魁, 吴颉. 高温超导体组合薄膜和相图表征高通量方法.  , doi: 10.7498/aps.70.20202102
    [7] 郑东宁. 超导量子干涉器件.  , doi: 10.7498/aps.70.20202131
    [8] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展.  , doi: 10.7498/aps.67.20181319
    [9] 金霞, 董正超, 梁志鹏, 仲崇贵. 磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森效应.  , doi: 10.7498/aps.62.047401
    [10] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制.  , doi: 10.7498/aps.61.170304
    [11] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射.  , doi: 10.7498/aps.59.5755
    [12] 贺丽, 胡翔, 尹澜, 许恒毅, 徐晓林, 郭建栋, 李传义, 尹道乐. 高温超导体霍尔电阻和霍尔角在涡旋玻璃相变附近的普适标度律及统一霍尔电阻方程.  , doi: 10.7498/aps.58.417
    [13] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应.  , doi: 10.7498/aps.57.7252
    [14] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性.  , doi: 10.7498/aps.52.463
    [15] 胡立发, ASulpice, PDixador, 张平祥, 李成山, 纪平, 滕鑫康, 汪金荣, 冯勇, 周廉. Bi2223带材的临界电流及交流损耗研究.  , doi: 10.7498/aps.51.1826
    [16] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜.  , doi: 10.7498/aps.51.406
    [17] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究.  , doi: 10.7498/aps.50.1193
    [18] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗.  , doi: 10.7498/aps.50.1359
    [19] 黄洪斌. 超导体中库珀对的SU(2)与Glauber相干态——库珀对与约瑟夫森超流性的量子特性研究.  , doi: 10.7498/aps.40.1402
    [20] 刘福绥. 超导桥约瑟夫森效应的微观理论.  , doi: 10.7498/aps.26.411
计量
  • 文章访问数:  58
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-06

/

返回文章
返回
Baidu
map