搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中尺度沙尘暴对量子卫星通信信道的影响及性能仿真

聂敏 尚鹏钢 杨光 张美玲 裴昌幸

引用本文:
Citation:

中尺度沙尘暴对量子卫星通信信道的影响及性能仿真

聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸

Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation

Nie Min, Shang Peng-Gang, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 中尺度沙尘暴是美国内华达州、我国北部及中东国家等地沙尘天气的常见形式. 为了研究中尺度沙尘暴对量子卫星通信信道的影响, 首先分析了沙尘暴的物理特性, 根据中尺度沙尘暴的扩散模型, 提出了中尺度沙尘特性与量子纠缠度的关系; 然后仿真了沙尘特性对量子卫星信道参数的影响. 结果表明, 如果沙尘扩散时间为12 h, 中尺度沙尘粒子半径分别为1和25μm, 则量子卫星信道的纠缠度依次为0.6和0.4, 信道的利用率分别为0.9和0.8, 信道容量分别为0.95和0.8. 由此可见, 量子信道的各种参数与沙尘暴的特性密切相关. 因此, 为了提高量子卫星通信的可靠性, 应根据沙尘灾变程度, 自适应调整卫星信道的各种参数.
    Mesoscale sandstorm is a common form of dust weather in Nevada in the US, the northern part in China, and the Middle East countries in the Asia. To investigate the influence of mesoscale sandstorm on the quantum satellite communication channels, the physical characteristics of the dust storms are analyzed first. According to the diffusion model of mesoscale storms, the relationship between the proposed scale dust features and the degree of quantum entanglement is established then. The effect of dust on properties of the quantum satellite channel is simulated finally. The results show that if the diffusion time for the dust is 12 hours, the dust particle radii are 1 and 25 μm, the entanglement degrees of quantum satellite channels are 0.6 and 0.4, the utilization rates of quantum satellite channels are 0.9 and 0.8, the capacities of quantum satellite channels are 0.95 and 0.8. The characteristic parameters of the quantum channels are closely related to sandstorms. Therefore, in order to improve the reliability of quantum satellite communications, the parameters of quantum satellite channels should be adjusted adaptively.
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)和陕西省自然科学基础研究计划(批准号: 2014JQ8318)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194) and the Natural Science Research Foundation of Shanxi Province, China (Grant No. 2014JQ8318).
    [1]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [2]

    Kuzmich A, Bowen W P, Boozer A D, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [3]

    Mandel O, Greiner M, Widera A, Rom T, Theodor W, Bloch I 2003 Nature 425 937

    [4]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 62 170305]

    [5]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [6]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [7]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Phys. B 23 010305

    [8]

    Nie M, Zhang L, Liu X H 2013 Acta Phys. Sin. 62 230303 (in Chinese) [聂敏, 张琳, 刘晓慧 2013 62 230303]

    [9]

    Zhao J H, Zhang Q 2010 Acta Phys. Sin. 59 8954 (in Chinese) [赵建华, 张强 2010 59 8954]

    [10]

    Zhang Z S, Dong Z G, Zhao A G 2008 Chin. Sci. Bull. 53 1953 (in Chinese) [张正偲, 董治国, 赵爱国 2008 科学通报 53 1953]

    [11]

    Wang P X, Sun L D, Yue P, Niu S J 2007 J. Desert Res. 27 1077 (in Chinese) [王鹏祥, 孙兰东, 岳平, 牛生杰 2007 中国沙漠 27 1077]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834]

    [13]

    Wang Y T, Zhao Y H, Yang X X, Zhao Z G, Xue Y L, Gao Q X, Ren Z H 2002 J. Safety Environ. 2 18 (in Chinese) [王耀庭, 赵燕华, 杨新兴, 张志刚, 薛玉兰, 高庆先, 任阵海 2002 安全与环境学报 2 18]

    [14]

    Liu C T, Cheng L S 1997 Acta Meterorologica Sin. 55 726 (in Chinese) [刘春涛,程麟生 1997 气象学报 55 726]

    [15]

    Anthes R A, L Y H, Guo X R 1991 Meteorol. Sci. Technol. 1 40 (in Chinese) [Anthes R A, 吕越华, 郭肖容 1991 气象科技 1 40]

    [16]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [17]

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese) [张永德 2010 高等量子力学 (北京: 科学出版社) 第24页]

    [18]

    Li J D, Sheng M, Li H Y 2011 Communications Network Infrastructure (Vol. 2) (Beijing: Higher Education Press) pp94-101 (in Chinese) [李建东, 盛敏, 李红艳 2011 通信网络基础 (第二版) (北京: 高等教育出版社) 第94–101页]

    [19]

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [20]

    Yan Y, Pei C X, Shi R J, Han B B, Zhang L 2007 J. Xidian Univ. (Nature Science Edition) 34 708 (in Chinese) [闫毅, 裴昌幸, 师瑞娟, 韩宝彬, 张磊 2007 西安电子科技大学学报(自然科学版) 34 708]

  • [1]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [2]

    Kuzmich A, Bowen W P, Boozer A D, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [3]

    Mandel O, Greiner M, Widera A, Rom T, Theodor W, Bloch I 2003 Nature 425 937

    [4]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 62 170305]

    [5]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [6]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [7]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Phys. B 23 010305

    [8]

    Nie M, Zhang L, Liu X H 2013 Acta Phys. Sin. 62 230303 (in Chinese) [聂敏, 张琳, 刘晓慧 2013 62 230303]

    [9]

    Zhao J H, Zhang Q 2010 Acta Phys. Sin. 59 8954 (in Chinese) [赵建华, 张强 2010 59 8954]

    [10]

    Zhang Z S, Dong Z G, Zhao A G 2008 Chin. Sci. Bull. 53 1953 (in Chinese) [张正偲, 董治国, 赵爱国 2008 科学通报 53 1953]

    [11]

    Wang P X, Sun L D, Yue P, Niu S J 2007 J. Desert Res. 27 1077 (in Chinese) [王鹏祥, 孙兰东, 岳平, 牛生杰 2007 中国沙漠 27 1077]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834]

    [13]

    Wang Y T, Zhao Y H, Yang X X, Zhao Z G, Xue Y L, Gao Q X, Ren Z H 2002 J. Safety Environ. 2 18 (in Chinese) [王耀庭, 赵燕华, 杨新兴, 张志刚, 薛玉兰, 高庆先, 任阵海 2002 安全与环境学报 2 18]

    [14]

    Liu C T, Cheng L S 1997 Acta Meterorologica Sin. 55 726 (in Chinese) [刘春涛,程麟生 1997 气象学报 55 726]

    [15]

    Anthes R A, L Y H, Guo X R 1991 Meteorol. Sci. Technol. 1 40 (in Chinese) [Anthes R A, 吕越华, 郭肖容 1991 气象科技 1 40]

    [16]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [17]

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese) [张永德 2010 高等量子力学 (北京: 科学出版社) 第24页]

    [18]

    Li J D, Sheng M, Li H Y 2011 Communications Network Infrastructure (Vol. 2) (Beijing: Higher Education Press) pp94-101 (in Chinese) [李建东, 盛敏, 李红艳 2011 通信网络基础 (第二版) (北京: 高等教育出版社) 第94–101页]

    [19]

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [20]

    Yan Y, Pei C X, Shi R J, Han B B, Zhang L 2007 J. Xidian Univ. (Nature Science Edition) 34 708 (in Chinese) [闫毅, 裴昌幸, 师瑞娟, 韩宝彬, 张磊 2007 西安电子科技大学学报(自然科学版) 34 708]

  • [1] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [2] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [3] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门.  , 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [5] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数.  , 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [8] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响.  , 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [9] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] 李申, 马海强, 吴令安, 翟光杰. 全光纤量子通信系统中的高速偏振控制方案.  , 2013, 62(8): 084214. doi: 10.7498/aps.62.084214
    [12] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信.  , 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [13] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性.  , 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [17] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [18] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  6596
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-08-11
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map