-
理解电极表面氧气泡演化对提升大规模水分解的效率具有重要意义。本文提出了一种基于气泡边界的溶解氧通量的电极表面氧气泡生长的数值模型,研究了反应区域和电流的大小对气泡生长的影响。结果表明,由气泡边界的氧通量计算得到气泡直径与气泡在化学反应控制阶段的生长关系吻合较好。随着反应区域增大,在气泡生长过程中,由扩散控制向化学反应控制阶段过渡的时间也变长。微电极表面的浓度峰值明显高于大电极表面的浓度峰值,从而导致微电极表面与气泡表面之间的浓度梯度更加陡峭。随着电流增加,气泡的生长速率增加,时间系数降低得越快。电流为0.06 mA时的气泡直径与光电解水实验中电流为0.1 mA的气泡直径能较好的吻合。这是因为生长的气泡对光的散射会导致气泡底部电流密度的降低。Understanding the oxygen bubble evolution on the electrode surface is important to enhance the efficiency of large-scale water decomposition. In this paper, a numerical model for the growth of oxygen bubbles on the electrode surface based on the dissolved oxygen flux at the bubble boundary is proposed, and the mechanisms of the reaction area and current on the bubble growth are investigated. The results show that the bubble diameters calculated from the oxygen flux at the bubble boundary are in good agreement with the growth of the bubbles in the control phase of the chemical reaction. As the reaction region increases, the transition time from the diffusion-controlled to the chemical reaction-controlled stage becomes longer during the bubble growth. The concentration maximum on the microelectrode surface is significantly higher than that on the large electrode surface, which leads to a steeper concentration gradient between the microelectrode surface and the bubble surface. As the current increases, the bubble growth rate increases and the time coefficient decreases faster. The bubble diameter at a current of 0.06 mA agrees well with the bubble diameter at a current of 0.1 mA in the photoelectrochemical water splitting experiments. This is because the scattering of light by the growing bubbles leads to a decrease in the current density at the bottom of the bubble.
-
Keywords:
- oxygen bubble evolution /
- time coefficient /
- numerical simulation /
- photoelectrochemical water splitting
-
[1] Zhang S, Chen W 2022Nat Commun 13 87
[2] Angulo A, Linde P van der, Gardeniers H, Modestino M, Fernández Rivas D 2020Joule 4 555
[3] Iwata R, Zhang L, Wilke K L, Gong S, He M, Gallant B M, Wang E N 2021Joule 5 887
[4] Chen J, Guo L, Hu X, Cao Z, Wang Y 2018Electrochimica Acta 274 57
[5] Andaveh R, Darband G B, Maleki M, Rouhaghdam A S 2022J. Mater. Chem. A 10 5147
[6] Zhan S, Yuan R, Huang Y, Zhang W, Li B, Wang Z, Wang J 2022Physics of Fluids 34 112120
[7] GUO L,CAO Z,WANG Y 2023 Journal of Xi'an Jiaotong University 571 (in Chinese) [郭烈锦, 曹振山, 王晔春, 张博, 冯雨杨, 徐强2023西安交通大学学报571]
[8] Peñas P, Moreno Soto Á, Lohse D, Lajoinie G, van der Meer D 2021Int. J. Heat Mass Transfer 174 121069
[9] Luo X, Xu Q, Ye X, Wang M, Guo L 2024International Journal of Hydrogen Energy 61 859
[10] Luo X, Xu Q, Nie T, She Y, Ye X, Guo L 2023Phys. Chem. Chem. Phys. 25 16086
[11] Park S, Liu L, Demirkır Ç, Van Der Heijden O, Lohse D, Krug D, Koper M T M 2023Nat. Chem. 15 1532
[12] Da Silva J, Nobrega E, Staciaki F, Almeida F R, Wosiak G, Gutierrez A, Bruno O, Lopes M C, Pereira E 2024Chemical Engineering Journal 494 152943
[13] Xu Q, Tao L, Nie T, Liang L, She Y, Wang M 2024J. Electrochem. Soc. 171 016501
[14] Bashkatov A, Park S, Demirkır Ç, Wood J A, Koper M T M, Lohse D, Krug D 2024J. Am. Chem. Soc.
[15] Zhang B, Wang Y, Feng Y, Zhen C, Liu M, Cao Z, Zhao Q, Guo L 2024Cell Rep. Phys. Sci. 101837
[16] Liu H, Pan L ming, Wen J 2016Can. J. Chem. Eng. 94 192
[17] Meulenbroek A M, Vreman A W, Deen N G 2021Electrochimica Acta 385 138298
[18] Zhan S, Yuan R, Wang X, Zhang W, Yu K, Li B, Wang Z, Wang J 2023Physics of Fluids 35 032111
[19] Raman A, Porto C C D S, Gardeniers H, Soares C, Fernández Rivas D, Padoin N 2023Chemical Engineering Journal 477 147012
[20] Meulenbroek A M, Deen N G, Vreman A W 2024Electrochimica Acta 497 144510
[21] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M 2017Chem. Soc. Rev. 46 337
[22] Chen J, Guo L 2019Appl. Phys. Lett. 114 231604
[23] Obata K, F. Abdi F 2021Sustainable Energy & Fuels 5 3791
[24] Matsushima H, Kiuchi D, Fukunaka Y, Kuribayashi K 2009Electrochemistry Communications 11 1721
[25] Cao Z, Wang Y, Xu Q, Feng Y, Hu X, Guo L 2020Electrochimica Acta 347 136230
[26] Fernández D, Maurer P, Martine M, Coey J M D, Möbius M E 2014Langmuir 30 13065
[27] Yang X, Karnbach F, Uhlemann M, Odenbach S, Eckert K 2015Langmuir 31 8184
[28] Xu Q, Tao L, She Y, Ye X, Wang M, Nie T 2023Journal of Electroanalytical Chemistry 935 117324
[29] Lu X, Nie T, Li X, Jing L, Zhang Y, Ma L, Jing D 2023Physics of Fluids 35 103314
[30] Nie T, Li Z, Luo X, She Y, Liang L, Xu Q, Guo L 2022Electrochimica Acta 436 141394
[31] Dorfi A E, West A C, Esposito D V 2017J. Phys. Chem. C 121 26587
[32] Holmes-Gentle I, Bedoya-Lora F, Alhersh F, Hellgardt K 2019J. Phys. Chem. C 123 17
计量
- 文章访问数: 75
- PDF下载量: 4
- 被引次数: 0