-
报道了一种基于双向拉曼放大的布里渊光时域分析系统(Brillouin optical time domain analyzer,BOTDA).利用双向拉曼抽运对信号光进行拉曼放大以补偿光纤损耗及布里渊抽运波的消耗,从而使光纤后端的测量分辨率得到改善,测量分辨率在整段传感光纤趋于一致,同时避免了调制不稳定性引起的频谱扩展,克服了传统BOTDA存在的信号强度指数下降的弊端,使传感精度得到进一步提高.实验实现了50 km传感距离, 温度分辨率达0.6 ℃,空间分辨率为50 m.实验测量并分析了基于双向拉曼放大的BOTDA信噪比和光功率分布特性.We report a Brillouin optical time domain analyzer (BOTDA) based on bi-directional Raman amplification in this paper. With the bi-directional Raman amplification, the loss of the optical fiber and the depletion of Brillouin pump light can be compensated for efficiently, hence the measurement resolution is improved at the end of the optical fiber significantly. The detected signal is stable along the whole length of the sensing fiber, free from the spectral broadening caused by the modulation instability and the problem of uneven ness of detected signals of the conventional BOTDA. The Raman amplification is very useful for enhancing the measurement accuracy. With the bi-directional Raman pump, a temperature resolution of 0.6 ℃ was achieved over a sensing distance of 50 km with a 50 m spatial resolution. The signal-to-noise ratio and the optical signal power distribution characteristics of the system have been studied by experiment.
-
Keywords:
- distributed optical fiber sensing /
- stimulated Raman amplification /
- Brillouin gain /
- Brillouin optical time domain analyzer
[1] Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y 1995 J. Lightwave Technol. 13 1296
[2] Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1993 Opt. Lett. 18 185
[3] Alahbabi M N, Cho Y T, Newson T P 2004 Meas. Sci. Technol. 15 1544
[4] Alahbabi M N, Cho Y T, Wait P C, Hartog A H, Newson T P 2004 J. Opt. Soc. Am. B 21 1156
[5] Smith J, Brown A, DeMerchant M, Bao X 1999 Appl. Opt. 38 5372
[6] Soto M A, Bolognini G, Pasquale F D 2008 Opt. Express 16 19097
[7] Islam M N 2002 IEEE J. Sel. Top. Quantum Electron. 8 548
[8] Gupta G C, Wang L L, Mizuhara O, Tench R E, Dang N N,Tabaddor P,Judy A 2003 IEEE Photonics Technol. Lett. 15 996
[9] Rasmusssen C, Fjelde T, Bennike J, Liu F, Dey S, Mikkelsen B, Mamyshev P, Serbe P, Wagt P, Akasaka Y, Harris D, Gapontsev D, Ivshin V, Hall P R 2004 J. Lightwave Technol. 22 203
[10] Ma Y H, Xie S Z, Chen M H 2005 Acta Phys. Sin. 54 123(in Chinese) [马永红、谢世钟、陈明华 2005 54 123]
[11] Tong Z, Wei H, Jian S S 2006 Acta Phys. Sin. 55 1873 (in Chinese) [童 治、魏 淮、简水生 2006 55 1873]
[12] Yun P, Chi R H, Li Y G, Lv K C 2004 Acta Phys. Sin. 53 4229 (in Chinese) [运 鹏、迟荣华、李乙钢、吕可诚 2004 53 4229]
[13] Bernini R, Minardo A, Zeni L 2002 Proc. IEEE Sensors 1214 1006
[14] Naruse H, Tateda M, Ohnoet H 2002 The 15th Optical Fiber Sensors Conference Technical Digest, Portland, May 6—10, 2002 p309
-
[1] Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y 1995 J. Lightwave Technol. 13 1296
[2] Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1993 Opt. Lett. 18 185
[3] Alahbabi M N, Cho Y T, Newson T P 2004 Meas. Sci. Technol. 15 1544
[4] Alahbabi M N, Cho Y T, Wait P C, Hartog A H, Newson T P 2004 J. Opt. Soc. Am. B 21 1156
[5] Smith J, Brown A, DeMerchant M, Bao X 1999 Appl. Opt. 38 5372
[6] Soto M A, Bolognini G, Pasquale F D 2008 Opt. Express 16 19097
[7] Islam M N 2002 IEEE J. Sel. Top. Quantum Electron. 8 548
[8] Gupta G C, Wang L L, Mizuhara O, Tench R E, Dang N N,Tabaddor P,Judy A 2003 IEEE Photonics Technol. Lett. 15 996
[9] Rasmusssen C, Fjelde T, Bennike J, Liu F, Dey S, Mikkelsen B, Mamyshev P, Serbe P, Wagt P, Akasaka Y, Harris D, Gapontsev D, Ivshin V, Hall P R 2004 J. Lightwave Technol. 22 203
[10] Ma Y H, Xie S Z, Chen M H 2005 Acta Phys. Sin. 54 123(in Chinese) [马永红、谢世钟、陈明华 2005 54 123]
[11] Tong Z, Wei H, Jian S S 2006 Acta Phys. Sin. 55 1873 (in Chinese) [童 治、魏 淮、简水生 2006 55 1873]
[12] Yun P, Chi R H, Li Y G, Lv K C 2004 Acta Phys. Sin. 53 4229 (in Chinese) [运 鹏、迟荣华、李乙钢、吕可诚 2004 53 4229]
[13] Bernini R, Minardo A, Zeni L 2002 Proc. IEEE Sensors 1214 1006
[14] Naruse H, Tateda M, Ohnoet H 2002 The 15th Optical Fiber Sensors Conference Technical Digest, Portland, May 6—10, 2002 p309
计量
- 文章访问数: 9359
- PDF下载量: 973
- 被引次数: 0