搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理对碱金属钒酸盐AV3O8(A=Li, Na, K, Rb)大双折射率的机理研究

万俯宏 丁家福 和志豪 王云杰 崔健 李佳郡 苏欣 黄以能

引用本文:
Citation:

基于第一性原理对碱金属钒酸盐AV3O8(A=Li, Na, K, Rb)大双折射率的机理研究

万俯宏, 丁家福, 和志豪, 王云杰, 崔健, 李佳郡, 苏欣, 黄以能

First-principles study on the mechanism of high birefringence in alkali metal vanadates AV3O8 (A=Li, Na, K, Rb)

WAN Fuhong, DING Jiafu, HE Zhihao, WANG Yunjie, CUI Jian, LI Jiajun, SU Xin, HUANG Yineng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 双折射作为光学晶体的基本参数,在相位调制、分光、偏振等许多光学应用中发挥着重要的作用,是激光科学与技术中的关键材料,而钒酸盐多面体较大双折射率为开发双折射材料提供了一条新的途径。本文采用第一性原理研究四种碱金属钒酸盐AV3O8(A=Li, Na, K, Rb)晶体的能带结构、态密度、电子局域函数和双折射率。计算结果表明碱金属钒酸盐AV3O8(A=Li, Na, K, Rb)均为间接带隙,带隙值分别为1.695、1.898、1.965和1.984 eV。对态密度分析可知在费米能级附近,碱金属钒酸盐AV3O8(A=Li, Na, K, Rb)导带底主要被V原子的最外层轨道所占据,价带顶的主要贡献者是O-2p轨道,O原子的2p轨道还在费米能级附近表现出较强的局域性,结合HOMO和LUMO以及布居分析说明在四种晶体中主要由V-3p轨道与O的2p轨道成键,V-O表现为强的共价键。通过对晶体结构与光学性质关系的分析,晶体较大的各向异性,较高水平的响应电子分布各向异性指数,阴离子基团的特殊排列和V-3d和O-2p轨道形成的d-p轨道杂化都是导致其大双折射率的主要原因,经计算所得LiV3O8、NaV3O8、KV3O8和RbV3O8四种物质在1064 nm处的双折射率分别为0.28、0.30、0.28和0.27。
    Birefringence, as a fundamental parameter of optical crystals, plays a vital role in numerous optical applications such as phase modulation, light splitting, and polarization, making them key materials in laser science and technology. The significant birefringence of vanadate polyhedra provides a new approach for developing birefringent materials. In this study, first-principles calculations are used to investigate the band structures, density of states (DOS), electron localization functions (ELF), and birefringence of four alkali metal vanadate crystals AV3O8 (A=Li, Na, K, Rb). The computational results show that all AV3O8 crystals have indirect band gaps, with values of 1.695, 1.898, 1.965, and 1.984 eV for LiV3O8, NaV3O8, KV3O8, and RbV3O8, respectively. The DOS analysis reveals that near the Fermi level, the conduction band minimum (CBM) in these vanadates is predominantly occupied by the outermost orbitals of V atoms, while the valence band maximum (VBM) is primarily contributed by O-2p orbitals. The O-2p orbitals also exhibit strong localization near the Fermi level. Combined with HOMO-LUMO (Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital) analysis and population analysis, the bonding interactions in all four crystals mainly arise from the hybridization between V-3p and O-2p orbitals, indicating strong covalent bonding in V-O bonds. Through the analysis of structure-property relationships, the large birefringence is primarily attributed to the pronounced structural anisotropy, high anisotropy index of responsive electron distribution, unique arrangement of anionic groups, and d-p orbital hybridization between V-3d and O-2p orbitals. The calculated birefringence values at a wavelength of 1064 nm for LiV3O8, NaV3O8, KV3O8, and RbV3O8 are 0.28, 0.30, 0.28, and 0.27, respectively.
  • [1]

    Pedrotti F L, Pedrotti L M, Pedrotti L S 2018Introduction to optics [England: Cambridge University Press] pp333-360

    [2]

    Li X Z, Wang C, Chen X L, Li H, Jia L S, Wu L, Du Y X, Xu Y P 2004Inorg. Chem. 43 8555

    [3]

    Nomura H, Furutono Y 2008Microelectron. Eng. 85 1671

    [4]

    Aoki K, Miyazaki H T, Hirayama H 2003Nat. Mater. 2 117

    [5]

    Lancry M, Desmarchelier R, Cook K, Poumellec B, Canning J 2014MICROMACHINES-BASEL 5 825

    [6]

    Li R 2013Z KRIST-CRYST MATER 228 526

    [7]

    Levy M, Jalali A A, Huang X 2009J MATER SCI-MATER EL 20: 43

    [8]

    Zhang H, Zhang M, Pan S, Yang Z, Wang Z, Bian Q, Poeppelmeier K R 2015Cryst. Growth Des. 15 523

    [9]

    Ghosh G 1999Opt. Commun. 163 95

    [10]

    Luo H, Tkaczyk T, Sampson R, Dereniak E L 2006Proc. SPIE 6119 136

    [11]

    Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Fuxi G 1998J. Cryst. Growth 191 517-519

    [12]

    Appel R, Dyer C D, Lockwood J N 2002Appl. Opt. 41 2470

    [13]

    Cyranoski D 2009Nature 457 953

    [14]

    Krainer L, Paschotta R, Lecomte S, Moser M, Weingarten K J, Keller U 2002 IEEE J. Quantum Electron. 38 1331

    [15]

    Lisinetskii V A, Grabtchiko A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499

    [16]

    Vodchits A I, Orlovich V A, Apanasevich P A 2012J. Appl. Spectrosc. 78 918

    [17]

    Yu H, Liu J, Zhang H, Kaminskii A. A, Wang Z, Wang J 2014Laser Photonics Rev. 8 847-864

    [18]

    Lei B H, Kong Q, Yang Z, Yang Y, Wang Y, Pan S 2016J. Mater. Chem. C 4 6295

    [19]

    Li K, Zhang X, Chai B, Yu H, Hu Z, Wang J, Wu H Chem.-Eur. J. e202403515

    [20]

    Li K, Wu H, Yu H, Hu Z, Wang J, Wu Y 2024Chem. Commun. 60 12734

    [21]

    Lei B H, Yang Z, Pan S 2017Chem. Commun. 53 2818

    [22]

    Huang Y, Zhang X Y, Zhao S G, Mao J G, Yang B P 2024J. Mater. Chem. C 12 7286

    [23]

    Zhang S, Dong L, Xu B, Chen H, Huo H, Liang F, Lin Z 2024Inorg. Chem. Front. 11 5528

    [24]

    Cheng J, Xu D, Lu J, Zhang F, Hou X 2023Inorg. Chem. 62 20340

    [25]

    Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y 2017Small 13 1603148

    [26]

    Cao X, Yang Q, Zhu L, Xie L 2018Ionics 24 943

    [27]

    Yang H, Li J, Zhang X G, Jin Y L 2008J. Mater. Process. Technol. 207 265

    [28]

    Zhu L, Li W, Xie L, Yang Q, Cao X 2019Chem. Eng. J. 372 1056

    [29]

    Feng L, Zhang W, Xu L, Li D, Zhang Y 2020Solid State Sci. 103 106187

    [30]

    Kim H J, Jo J H, Choi J U, Voronina N, Myung S T 2020J. Power Sources 478 229072

    [31]

    Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E 2021Materials 14 6976

    [32]

    Wu W, Ding J, Peng H, Li G 2011MATER LETT 65 2155

    [33]

    Zhu J, Li X, Chen S, Huang C, Feng J, Kuang Q, Zhao Y 2020Electrochim. Acta 355 136799

    [34]

    Wadsley A D 1957Acta Crystallogr. 10 261

    [35]

    Bachmann H G, Barnes W H 1962CAN MINERAL 7 219

    [36]

    Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P 2014Inorg. Chem. 53 1764

    [37]

    Oka Y, Yao T, Yamamoto N. 1997Mater. Res. Bull. 32 1201

    [38]

    Segall M D, Lindan P J D, Probert M J 2002J. Phys.: Condens. Matter 14 2717

    [39]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos A J 1992Rev. Mod. Phys. 64 1045

    [40]

    Srivastava G P, Weaire D 1987Adv. Phys. 36 463

    [41]

    Monkhorst H J, Pack J D 1976Phys. Rev. B 13 5188

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865

    [43]

    Hamann D R, Schlüter M, Chiang C 1979Phys. Rev. Lett. 43 1494

    [44]

    Kong Q, Yang Y, Liu L, Bian Q, Lei B H, Li L, Pan S 2016J. Mater. Res. 31 488

    [45]

    Yan S S 2011Fundamentals of solid-state physics (Beijing: Peking University Press) (in Chinese) [阎守胜2011固体物理基础北京: 北京大学出版社]

    [46]

    Hiscocks J, Frisch M J 2009Gaussian 09: IOps Reference 9(USA: Gaussian)

    [47]

    Riffet V, Contreras-Garcıa J, Carrasco J, Calatayud M 2016J. Phys. Chem. C 120 4259

    [48]

    Mulliken R S 1931Chem. Rev. 9 347

    [49]

    Zhang B, Wang Y J, Qi Y J, He Z H, Ding J F, Su X 2024J. Synth. Cryst. 53 999(in Chinese)[张博,王云杰,齐亚杰,和志豪,丁家福,苏欣2024人工晶体学报53 999]

    [50]

    Su X, Wang Y, Yang Z, Huang X C, Pan S, Li F, Lee M H 2013J. Phys. Chem. C 117 14149

    [51]

    Tudi A, Han S, Yang Z, Pan S 2022Coord. Chem. Rev. 459 214380

    [52]

    Wang X, Zhang B, Yang D, Wang, Y 2022Dalton Trans. 51 14059

    [53]

    Bai S, Zhang X, Zhang B, Li L, Wang Y 2022Dalton Trans. 51 3421

    [54]

    Chu Y, Wang H, Chen Q, Su X, Chen Z, Yang Z, Pan S 2024Adv. Funct. Mater. 34 2314933

    [55]

    Ding Y, Zhu M, Wang J, Li B, Qi H, Liu L, Chu Y 2024Inorg. Chem. 63 20003

    [56]

    Lin L, Jiang X, Wu C, Lin Z, Huang Z, Humphrey M G, Zhang C 2021Dalton Trans. 50 7238

    [57]

    Lei B H, Yang Z, Pan S 2017Chem. Commun. 53 2818

    [58]

    Su X, Chu Y, Yang Z, Lei B H, Cao C, Wang Y, Pan S 2020J. Phys. Chem. C 124 24949

    [59]

    Bai S, Zhang X, Zhang B, Li L, Wang Y 2021Inorg. Chem. 60 10006

    [60]

    Li S, Dou D, Chen C, Shi Q, Zhang B, Wang Y 2024Inorg. Chem. 63 24076

    [61]

    Chu Y, Wang H, Abutukadi T, Li Z, Mutailipu M, Su X, Pan S 2023Small 19 2305074.

    [62]

    Liu H J, Liang C W, Liang W I, Chen H J, Yang J C, Peng C Y, Chu Y H 2012Phys. Rev. B Condens. Matter Mater. Phys. 85 014104

    [63]

    Wang Y J, He Z H, Ding J F, Su X 2025J. Synth. Cryst. 54 85-94(in Chinese)[王云杰,和志豪,丁家福,苏欣2025人工晶体学报54 85]

    [64]

    Ding J F, He Z H, Wang Y J, Su X 2025J. Synth. Cryst. 54 95-106(in Chinese)[丁家福,和志豪,王云杰,苏欣2025人工晶体学报54 95]

    [65]

    . Chu D D, Yang Z H, Pan S L 2024. J. Synth. Cryst. 53 1475-1493(in Chinese) [储冬冬, 杨志华, 潘世烈2024人工晶体学报53 1475]

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , doi: 10.7498/aps.73.20231979
    [2] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算.  , doi: 10.7498/aps.68.20191246
    [3] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性.  , doi: 10.7498/aps.67.20181129
    [4] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性.  , doi: 10.7498/aps.65.127501
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , doi: 10.7498/aps.64.207101
    [6] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算.  , doi: 10.7498/aps.64.026602
    [7] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究.  , doi: 10.7498/aps.64.187102
    [8] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , doi: 10.7498/aps.62.167502
    [9] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.62.163102
    [10] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , doi: 10.7498/aps.62.087104
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , doi: 10.7498/aps.62.037103
    [12] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究.  , doi: 10.7498/aps.62.247102
    [13] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.61.107102
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , doi: 10.7498/aps.60.047110
    [15] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究.  , doi: 10.7498/aps.60.096301
    [16] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , doi: 10.7498/aps.60.037102
    [17] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究.  , doi: 10.7498/aps.58.4883
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , doi: 10.7498/aps.57.4434
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究.  , doi: 10.7498/aps.54.328
计量
  • 文章访问数:  54
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-26

/

返回文章
返回
Baidu
map