搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道Feshbach共振附近类碱土金属原子的杂质态问题

石悦然 卢倬成 王璟琨 张威

引用本文:
Citation:

轨道Feshbach共振附近类碱土金属原子的杂质态问题

石悦然, 卢倬成, 王璟琨, 张威

Impurity problem of alkaline-earth-like atoms near an orbital Feshbach resonance

Shi Yue-Ran, Lu Zhuo-Cheng, Wang Jing-Kun, Zhang Wei
PDF
HTML
导出引用
  • 近年来, 碱土金属原子和类碱土金属原子体系的研究成为冷原子物理的研究热点之一. 特别是最近在173Yb原子中发现的轨道Feshbach共振, 使得研究有强相互作用的碱土金属和类碱土金属原子系统成为可能, 极大扩展了此类原子体系的研究范围. 本文介绍了173Yb费米气体在轨道Feshbach共振附近的杂质态问题. 在此问题中, 位于$ ^{3}{\rm P}_0 $态的杂质原子与处于基态的背景费米海相互作用, 并在费米海表面产生分子态或极化子态. 本文使用试探波函数的研究方法, 首先对分子态和吸引极化子态进行介绍, 并重点描述了分子态与吸引极化子态间的转变. 其次归纳总结了排斥极化子态的相关性质, 如有效质量、衰变率等. 然后考虑双费米面情况, 介绍在闭通道中引入另外一个费米面对系统产生的影响. 最后简要介绍二维173Yb费米气体中的杂质态问题.
    In recent years, alkaline-earth and alkaline-earth-like atoms have attracted much research interest in the field of ultracold atom. Especially, the recently discovered orbital Feshbach resonance makes it possible to investigate a strongly interacting gas of alkaline-earth or alkaline-earth-like atoms, which has greatly enriched the scope of quantum simulation in these systems. This paper focuses on the impurity problem in a Fermi gas of 173Yb atoms near orbital Feshbach resonance. In this problem, the impurity atom in 3P0 state will interact with the background Fermi sea in the ground state and the molecule or polaron state will be produced out of the Fermi sea. By using the Chevy-like ansatz, we investigate the properties of the molecule and attractive polaron states firstly and a transition between these two states will be found. Then, some properties of the repulsive polaron state will be introduced, such as the effective mass and the decay rate. Furthermore, the effect of an additional Fermi sea will be considered in this system. Finally, we will discuss the impurity problem in a two-dimensional system.
      通信作者: 王璟琨, jkwang@ruc.edu.cn ; 张威, wzhangl@ruc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0306501)、国家自然科学基金(批准号: 11434011, 11522436, 11774425)和中国人民大学科研基金(批准号: 16XNLQ03, 18XNLQ15)资助的课题.
      Corresponding author: Wang Jing-Kun, jkwang@ruc.edu.cn ; Zhang Wei, wzhangl@ruc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306501), the National Natural Science Foundation of China (Grant Nos. 11434011, 11522436, 11774425), and the Research Funds of Renmin University of China (Grant Nos. 16XNLQ03, 18XNLQ15).
    [1]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321Google Scholar

    [2]

    Ludlow A D, Boyd M M, Zelevinsky T, Foreman S M, Blatt S, Notcutt M, Ido T, Ye J 2006 Phys. Rev. Lett. 96 033003Google Scholar

    [3]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [4]

    Wu C, Hu J P, Zhang S C 2003 Phys. Rev. Lett. 91 186402Google Scholar

    [5]

    Fukuhara T, Takasu Y, Kumakura M, Takahashi Y 2007 Phys. Rev. Lett. 98 030401Google Scholar

    [6]

    Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P, Lukin M D 2009 Phys. Rev. Lett. 102 110503Google Scholar

    [7]

    Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M, Ye J 2014 Science 345 6203

    [8]

    Cappellini G, Mancini M, Pagano G, Lombardi P, Livi L, Siciliani de Cumis M, Cancio P, Pizzocaro M, Calonico D, Levi F, Sias C, Catani J, Inguscio M, Fallani L 2014 Phys. Rev. Lett. 113 120402

    [9]

    Scazza F, Hofrichter C, Höfer M, De Groot P C, Bloch I, Fölling S 2014 Nat. Phys. 10 779

    [10]

    Enomoto K, Kasa K, Kitagawa M, Takahashi Y 2008 Phys. Rev. Lett. 101 203201Google Scholar

    [11]

    Blatt S, Nicholson T L, Bloom B J, Williams J R, Thomsen J W, Julienne P S, Ye J 2011 Phys. Rev. Lett. 107 073202Google Scholar

    [12]

    Yan M, DeSalvo B J, Ramachandhran B, Pu H, Killian T C 2013 Phys. Rev. Lett. 110 123201Google Scholar

    [13]

    Zhang R, Cheng Y, Zhai H, Zhang P 2015 Phys. Rev. Lett. 115 135301Google Scholar

    [14]

    Pagano G, Mancini M, Cappellini G, Livi L, Sias C, Catani J, Inguscio M, Fallani L 2015 Phys. Rev. Lett. 115 265301Google Scholar

    [15]

    Höfer M, Riegger L, Scazza F, Hofrichter C, Fernandes D R, Parish M M, Levinsen J, Bloch I, Fölling S 2015 Phys. Rev. Lett. 115 265302Google Scholar

    [16]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [17]

    Porsev S G, Derevianko A, Fortson E N 2004 Phys. Rev. A 69 021403(R)Google Scholar

    [18]

    Santra R, Christ K V, Greene C H 2004 Phys. Rev. A 69 042510Google Scholar

    [19]

    Xu J, Zhang R, Cheng Y, Zhang P, Qi R, Zhai H 2016 Phys. Rev. A 94 033609Google Scholar

    [20]

    Iskin M 2016 Phys. Rev. A 94 011604(R)Google Scholar

    [21]

    Isaev L, Schachenmayer J, Rey A M 2016 Phys. Rev. Lett. 117 135302Google Scholar

    [22]

    He L, Wang J, Peng S G, Liu X J, Hu H 2016 Phys. Rev. A 94 043624Google Scholar

    [23]

    Chen J G, Deng T S, Yi W, Zhang W 2016 Phys. Rev. A 94 053627Google Scholar

    [24]

    Iskin M 2017 Phys. Rev. A 95 013618Google Scholar

    [25]

    Zhang Y C, Ding S, Zhang S 2017 Phys. Rev. A 95 041603(R)Google Scholar

    [26]

    Wang S, Pan J S, Cui X, Zhang W, Yi W 2017 Phys. Rev. A 95 043634Google Scholar

    [27]

    Deng T S, Zhang W, Yi W 2017 Phys. Rev. A 96 050701(R)Google Scholar

    [28]

    Zhou X, Pan J S, Liu Z X, Zhang W, Yi W, Chen G, Jia S 2017 Phys. Rev. Lett. 119 185701Google Scholar

    [29]

    Xu J, Qi R 2018 Eur. Phys. J. D 72 65Google Scholar

    [30]

    Chen J G, Shi Y R, Zhang X, Zhang W 2018 Frontiers of Physics 4 136702

    [31]

    Schirotzek A, Wu C H, Sommer A, Zwierlein M W 2009 Phys. Rev. Lett. 102 230402Google Scholar

    [32]

    Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F, Grimm R 2012 Nature 485 615Google Scholar

    [33]

    Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M, Köhl M 2012 Nature 485 619Google Scholar

    [34]

    Nascimbène S, Navon N, Jiang K J, Tarruell L, Teichmann M, McKeever J, Chevy F, Salomon C 2009 Phys. Rev. Lett. 103 170402Google Scholar

    [35]

    Massignan P, Zaccanti M, Bruun G M 2014 Rep. Prog. Phys. 77 034401Google Scholar

    [36]

    Cui X, Zhai H 2010 Phys. Rev. A 81 041602(R)Google Scholar

    [37]

    Pilati S, Bertaina G, Giorgini S, Troyer M 2010 Phys. Rev. Lett. 105 030405Google Scholar

    [38]

    Mathy C J M, Parish M M, Huse D A 2011 Phys. Rev. Lett. 106 166404Google Scholar

    [39]

    Yi W, Zhang W 2012 Phys. Rev. Lett. 109 140402Google Scholar

    [40]

    Zhou L, Cui X, Yi W 2014 Phys. Rev. Lett. 112 195301Google Scholar

    [41]

    Nishida Y 2015 Phys. Rev. Lett. 114 115302Google Scholar

    [42]

    Yi W, Cui X 2015 Phys. Rev. A 92 013620Google Scholar

    [43]

    Landau L D 1933 Phys. Z. Sowjetunion 3 644

    [44]

    Pekar S I 1946 Zh. Eksp. Teor. Fiz. 16 335

    [45]

    Fröhlich H, Pelzer H, Zienau S 1950 Philos. Mag. 41 221Google Scholar

    [46]

    Fröhlich H 1954 Adv. Phys. 3 325Google Scholar

    [47]

    Feynman R P 1955 Phys. Rev. 97 660Google Scholar

    [48]

    Bardeen J, Baym G, Pines D 1967 Phys. Rev. 156 207Google Scholar

    [49]

    Li J, Schneider W D, Berndt R, Delley B 1998 Phys. Rev. Lett. 80 2893Google Scholar

    [50]

    Chikkatur A P, Görlitz A, Stamper-Kurn D M, Inouye S, Gupta S, Ketterle W 2000 Phys. Rev. Lett. 85 483Google Scholar

    [51]

    Catani J, Lamporesi G, Naik D, Gring M, Inguscio M, Minardi F, Kantian A, Giamarchi T 2012 Phys. Rev. A 85 023623Google Scholar

    [52]

    Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A 2012 Phys. Rev. Lett. 109 235301Google Scholar

    [53]

    Scelle R, Rentrop T, Trautmann A, Schuster T, Oberthaler M K 2013 Phys. Rev. Lett. 111 070401Google Scholar

    [54]

    Cucchietti F M, Timmermans E 2006 Phys. Rev. Lett. 96 210401Google Scholar

    [55]

    Tempere J, Casteels W, Oberthaler M K, Knoop S, Timmermans E, Devreese J T 2009 Phys. Rev. B 80 184504Google Scholar

    [56]

    Rath S P, Schmidt R 2013 Phys. Rev. A 88 053632Google Scholar

    [57]

    Qiu X, Cui X, Yi W 2016 Phys. Rev. A 94 051604(R)Google Scholar

    [58]

    Sun M, Cui X 2017 Phys. Rev. A 96 022707Google Scholar

    [59]

    Bai X D, Wang J, Liu X J, Xiong J, Deng F G, Hu H 2018 Phys. Rev. A 98 023627Google Scholar

    [60]

    Hu H, Mulkerin B C, Wang J, Liu X J 2018 Phys. Rev. A 98 013626Google Scholar

    [61]

    Chevy F 2006 Phys. Rev. A 74 063628Google Scholar

    [62]

    Combescot R, Recati A, Lobo C, Chevy F 2007 Phys. Rev. Lett. 98 180402Google Scholar

    [63]

    Schmidt R, Enss T 2011 Phys. Rev. A 83 063620Google Scholar

    [64]

    Massignan P, Bruun G M 2011 Eur. Phys. J. D 65 83Google Scholar

    [65]

    Deng T S, Lu Z C, Shi Y R, Chen J G, Zhang W, Yi W 2018 Phys. Rev. A 97 013635Google Scholar

    [66]

    Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M, Roati G 2017 Phys. Rev. Lett. 118 083602Google Scholar

    [67]

    Dyke P, Kuhnle E D, Whitlock S, Hu H, Mark M, Hoinka S, Lingham M, Hannaford P, Vale C J 2011 Phys. Rev. Lett. 106 105304Google Scholar

  • 图 1  类碱土金属原子中的OFR能级图. 杂质原子处于$ | e\uparrow \rangle $态, 费米海处于$ | g\downarrow \rangle $态. 通过相互作用, 杂质原子和费米海中原子会被散射到闭通道的两个态上. $ \delta_g $$ \delta_e $是两个能级的塞曼移动

    Fig. 1.  Level diagram of an OFR. An impurity atom in the $ |e\uparrow\rangle $ state is immersed in a Fermi gas of alkaline-earth-like atoms in the $ |g\downarrow\rangle $ state. $ \delta_g $ and $ \delta_e $ are the Zeeman shifts of the $ |g\rangle $ and $ |e\rangle $ manifolds, respectively.

    图 2  (a), (b) 分子态的能量随$ \delta $$ 1/(k_{\downarrow {\rm F}}a_{\rm s}) $的变化; (c) 分子态的波函数分布情况; (d) $ E_{\rm M} $接近阈值能量$ E_{\rm F} $的分子态, 在$ { Q}\neq 0 $时的有效质量. 引自参考文献[23]

    Fig. 2.  (a), (b) The eigenenergy in the molecular state varies with $ \delta $ and $ 1/(k_{\downarrow {\rm F}}a_{\rm s}) $; (c) the wave functions' distribution in the open and closed channels; (d) the effective mass for the molecular state whose energy is closed to the threshold energy when $ { Q}\neq 0 $. Reproduced from Ref. [23].

    图 3  (a), (b) 吸引极化子态的能量随$ \delta $$ 1/(k_{\downarrow {\rm F}}a_{\rm s}) $的变化; (c) 吸引极化子态的波函数分布情况; (d) 吸引极化子态在$ { Q}\neq 0 $时的有效质量, 图中发散点为$ \delta/E_{\downarrow {\rm F}}\approx -0.35 $, 对应于$ 1/(k_{\downarrow {\rm F}}a_{\rm s})\approx 1.40 $. 图中参数与图2中一致. 引自参考文献[23]

    Fig. 3.  (a), (b) The eigenenergy in the attractive polaron state varies with $ \delta $ and $ 1/(k_{\downarrow {\rm F}}a_{\rm s}) $; (c) the wave functions' distribution in the open and closed channels; (d) the effective mass for the attractive polaron state when $ { Q}\neq 0 $. Parameters here are the same as those in Fig. 2. Reproduced from Ref. [23].

    图 4  (a), (b) 分子态(黑色实线)和吸引极化子态(蓝色虚线)的本征能量随$ \delta $$ 1/(k_{\downarrow {\rm F}}a_{\rm s}) $的变化, 吸引极化子态到分子态的转变发生在$ \delta_{\rm c}/E_{\downarrow {\rm F}} \approx -2.3 $$ 1/(k_{\downarrow {\rm F}} a_{\rm c})\approx 0.81 $处; (c) 转变点$ \delta_{\rm c} $(黑色实线)和对应的转变能量$ E_{\rm c} $(红色实线)随粒子数密度的变化. 引自参考文献[23]

    Fig. 4.  (a), (b) The eigenenergy of the molecule (black solid) and polaron (blue dashed) states vary with $ \delta $ and $ 1/(k_{\downarrow {\rm F}}a_{\rm s}) $. The transition point is around $ \delta_c/E_{\downarrow {\rm F}} \approx -2.3 $ and $ 1/(k_{\downarrow {\rm F}} a_{\rm c})\approx 0.81 $; (c) the transition point $ \delta_{\rm c} $ (black solid) and the corresponding energy $ E_{\rm c} $ (red solid) vary with particle density. Reproduced from Ref. [23].

    图 5  极化子态的谱函数$ A({ Q}=0, E_{\rm P}) $$ \delta $和能量变化的彩色图. 图中红色实线表示分子态能量, 由(8)式计算得到. 黑色点划线为吸引极化子态能量, 由(11)式计算得到. 两条线相交于$ \delta_{\rm c}/E_{\downarrow {\rm F}}\approx -2.3 $处. 图中蓝色虚线代表排斥极化子能量, 由(15)式得到. 当$ \delta $为较大负值时, 排斥极化子与图中由浅黄色区域代表的粒子-空穴连续区域重合. 当$ \delta $大于零时, 由于存在闭通道散射, 排斥极化子分支会变得模糊. 引自参考文献[30]

    Fig. 5.  The spectral function of the polaron state as a function of $ \delta $ and energy for $ { Q}=0 $. The red solid line represents the energy of molecule state, which is given by Eq. (8), and the black dashed-dotted line is the energy of attractive polaron state given by Eq. (11). The value of the crossing point for these two lines is $ \delta_{\rm c}/E_{\downarrow {\rm F}}\approx -2.3 $. The blue dashed line denotes the repulsive polaron energy given by Eq. (15). At large negative $ \delta $, the branch of repulsive polaron merges into the molecule-hole continuum, which is represented by the broad light yellow area. When $ \delta $ is a positive value, because of the closed channel scattering continuum, the repulsive polaron branch will be blurred. Reproduced from Ref. [30].

    图 6  (a), (b) 极化子态的准粒子残余和有效质量随$ \delta $的变化, 其中红色实线对应排斥极化子态, 蓝色虚线对应吸引极化子态; (c) 排斥极化子态的衰变率随$ \delta $的变化. 引自参考文献[65]

    Fig. 6.  (a), (b) Quasiparticle residues $ Z_\pm $ and effective masses for the attractive (blue dashed) and repulsive (red solid) polarons as functions of $ \delta $; (c) the decay rate $ \varGamma $ varies with $ \delta $. Reproduced from Ref. [65].

    图 7  双费米面情况下, 类碱土金属原子的OFR能级图. 杂质原子处于$ | e\uparrow \rangle $态, 费米海处于$ | g\downarrow \rangle $态和$ | g\uparrow \rangle $态. 通过相互作用, 杂质原子和费米海中原子会被散射到闭通道的两个态上. $ \delta_g $$ \delta_e $是两个能级的塞曼移动

    Fig. 7.  Level diagram of an OFR, which has two fermi seas. An impurity atom in the $ |e\uparrow\rangle $ state is immersed in a Fermi gas of alkaline-earth-like atoms in the $ |g\downarrow\rangle $ and $ | g\uparrow \rangle $ states. $ \delta_g $ and $ \delta_e $ are the Zeeman shifts of the $ |g\rangle $ and $ |e\rangle $ manifolds, respectively.

    图 8  质心动量为零, $ k_{\uparrow {\rm F}}=0 $ ((a)), $ k_{\uparrow {\rm F}}=1 $((b)), $ k_{\uparrow {\rm F}}=2 $ ((c))时, 分子态和吸引极化子态的本征能量随$ \delta $的变化; (d) 吸引极化子态到分子态的转变点随$ k_{\uparrow {\rm F}} $的变化, 其中, 黑色实线为计算得到的转变点, 红色点划线为费米能级$ E_{\uparrow {\rm F}}=k_{\uparrow {\rm F}}^2 $. 引自参考文献[30]

    Fig. 8.  The eigen energies of molecule and attractive polaron states vary with $ \delta $ when $ { Q}=0 $ and (a) $ k_{\uparrow {\rm F}}=0 $, (b) $ k_{\uparrow {\rm F}}=1 $, (c) $ k_{\uparrow {\rm F}}=2 $; (d) the transition point $ \delta_{\rm c} $ varies with $ k_{\uparrow {\rm F}} $, where the black solid line represents $ \delta_{\rm c} $ and the red dashed-dotted line is the Fermi level $ E_{\uparrow F}=k_{\uparrow {\rm F}}^2 $. Reproduced from Ref. [30].

    图 9  (a), (c) 分子态的波函数分布情况; (b), (d) 吸引极化子态的波函数分布, 此时质心动量为零. (a)和(b)中, $ k_{\uparrow {\rm F}}=1 $, (c)和(d)中, $ k_{\uparrow {\rm F}}=2 $. 引自参考文献[30]

    Fig. 9.  The fractions of wave functions for molecule ((a), (c)) and attractive polaron states ((b), (d)) with zero center-of-mass momentum. The parameter in this figure is $ k_{\uparrow {\rm F}}=1 $ for (a) and (b), $ k_{\uparrow {\rm F}}=2 $ for (c) and (d). Reproduced from Ref. [30].

    图 10  (a), (b) 在$ k_{\uparrow {\rm F}} $等于不同值时, 排斥极化子态的准粒子残余和有效质量随$ \delta $的变化情况. 图(a)中的插图描绘了吸引极化子态的准粒子残余随$ \delta $的变化情况. 图中, 当$ k_{\uparrow {\rm F}}=0 $时出现的非解析行为发生在$ \delta/E_{\downarrow {\rm F}}=-0.87 $处; (c) 排斥极化子态的衰变率$ \varGamma $$ k_{\uparrow {\rm F}} $等于不同值时随$ \delta $的变化情况. 引自参考文献[30]

    Fig. 10.  (a), (b) The quasiparticle residue $ Z_+ $ and the effective mass $ m_{{\rm P}+} $ vary with $ \delta $ for different values of $ k_{\uparrow {\rm F}} $. The obvious kink structure when $ k_{\uparrow {\rm F}}=0 $ appears near $ \delta/E_{\downarrow {\rm F}}=-0.87 $. The inset of (a) is the residues for attractive polarons; (c) the decay rates vary with $ \delta $ for different values of $ k_{\uparrow {\rm F}} $. Reproduced from Ref. [30].

    图 11  (a)-(c) 二维系统中, 质心动量为零,$ k_{\uparrow {\rm F}}=0 $ ((a)), $ k_{\uparrow {\rm F}}=1 $ ((b)), $ k_{\uparrow {\rm F}}=2 $ ((c))时, 分子态和吸引极化子态的本征能量随$ \delta $的变化; (d) 吸引极化子态到分子态的转变点随$ k_{\uparrow {\rm F}} $的变化, 其中黑色实线为计算得到的转变点, 红色虚线为费米能级$ E_{\uparrow {\rm F}}=k_{\uparrow {\rm F}}^2 $

    Fig. 11.  The eigen energies of molecule and attractive polaron states vary with $ \delta $ when $ { Q}=0 $ in a two-dimensional system and (a) $ k_{\uparrow {\rm F}}=0 $, (b) $ k_{\uparrow {\rm F}}=1 $, (c) $ k_{\uparrow {\rm F}}=2 $; (d) the transition point $ \delta_{\rm c} $ varies with $ k_{\uparrow {\rm F}} $, where the black solid line represents $ \delta_{\rm c} $ and the red dashed line is the Fermi level $ E_{\uparrow {\rm F}}=k_{\uparrow {\rm F}}^2 $.

    图 12  二维系统中$ k_{\uparrow {\rm F}} $等于不同值时排斥极化子态的衰变率$ \varGamma $$ \delta $的变化情况

    Fig. 12.  The decay rates of the repulsive polaron state in a a two-dimentional system vary with $ \delta $ for different values of $ k_{\uparrow {\rm F}} $.

    Baidu
  • [1]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321Google Scholar

    [2]

    Ludlow A D, Boyd M M, Zelevinsky T, Foreman S M, Blatt S, Notcutt M, Ido T, Ye J 2006 Phys. Rev. Lett. 96 033003Google Scholar

    [3]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [4]

    Wu C, Hu J P, Zhang S C 2003 Phys. Rev. Lett. 91 186402Google Scholar

    [5]

    Fukuhara T, Takasu Y, Kumakura M, Takahashi Y 2007 Phys. Rev. Lett. 98 030401Google Scholar

    [6]

    Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P, Lukin M D 2009 Phys. Rev. Lett. 102 110503Google Scholar

    [7]

    Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M, Ye J 2014 Science 345 6203

    [8]

    Cappellini G, Mancini M, Pagano G, Lombardi P, Livi L, Siciliani de Cumis M, Cancio P, Pizzocaro M, Calonico D, Levi F, Sias C, Catani J, Inguscio M, Fallani L 2014 Phys. Rev. Lett. 113 120402

    [9]

    Scazza F, Hofrichter C, Höfer M, De Groot P C, Bloch I, Fölling S 2014 Nat. Phys. 10 779

    [10]

    Enomoto K, Kasa K, Kitagawa M, Takahashi Y 2008 Phys. Rev. Lett. 101 203201Google Scholar

    [11]

    Blatt S, Nicholson T L, Bloom B J, Williams J R, Thomsen J W, Julienne P S, Ye J 2011 Phys. Rev. Lett. 107 073202Google Scholar

    [12]

    Yan M, DeSalvo B J, Ramachandhran B, Pu H, Killian T C 2013 Phys. Rev. Lett. 110 123201Google Scholar

    [13]

    Zhang R, Cheng Y, Zhai H, Zhang P 2015 Phys. Rev. Lett. 115 135301Google Scholar

    [14]

    Pagano G, Mancini M, Cappellini G, Livi L, Sias C, Catani J, Inguscio M, Fallani L 2015 Phys. Rev. Lett. 115 265301Google Scholar

    [15]

    Höfer M, Riegger L, Scazza F, Hofrichter C, Fernandes D R, Parish M M, Levinsen J, Bloch I, Fölling S 2015 Phys. Rev. Lett. 115 265302Google Scholar

    [16]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [17]

    Porsev S G, Derevianko A, Fortson E N 2004 Phys. Rev. A 69 021403(R)Google Scholar

    [18]

    Santra R, Christ K V, Greene C H 2004 Phys. Rev. A 69 042510Google Scholar

    [19]

    Xu J, Zhang R, Cheng Y, Zhang P, Qi R, Zhai H 2016 Phys. Rev. A 94 033609Google Scholar

    [20]

    Iskin M 2016 Phys. Rev. A 94 011604(R)Google Scholar

    [21]

    Isaev L, Schachenmayer J, Rey A M 2016 Phys. Rev. Lett. 117 135302Google Scholar

    [22]

    He L, Wang J, Peng S G, Liu X J, Hu H 2016 Phys. Rev. A 94 043624Google Scholar

    [23]

    Chen J G, Deng T S, Yi W, Zhang W 2016 Phys. Rev. A 94 053627Google Scholar

    [24]

    Iskin M 2017 Phys. Rev. A 95 013618Google Scholar

    [25]

    Zhang Y C, Ding S, Zhang S 2017 Phys. Rev. A 95 041603(R)Google Scholar

    [26]

    Wang S, Pan J S, Cui X, Zhang W, Yi W 2017 Phys. Rev. A 95 043634Google Scholar

    [27]

    Deng T S, Zhang W, Yi W 2017 Phys. Rev. A 96 050701(R)Google Scholar

    [28]

    Zhou X, Pan J S, Liu Z X, Zhang W, Yi W, Chen G, Jia S 2017 Phys. Rev. Lett. 119 185701Google Scholar

    [29]

    Xu J, Qi R 2018 Eur. Phys. J. D 72 65Google Scholar

    [30]

    Chen J G, Shi Y R, Zhang X, Zhang W 2018 Frontiers of Physics 4 136702

    [31]

    Schirotzek A, Wu C H, Sommer A, Zwierlein M W 2009 Phys. Rev. Lett. 102 230402Google Scholar

    [32]

    Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F, Grimm R 2012 Nature 485 615Google Scholar

    [33]

    Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M, Köhl M 2012 Nature 485 619Google Scholar

    [34]

    Nascimbène S, Navon N, Jiang K J, Tarruell L, Teichmann M, McKeever J, Chevy F, Salomon C 2009 Phys. Rev. Lett. 103 170402Google Scholar

    [35]

    Massignan P, Zaccanti M, Bruun G M 2014 Rep. Prog. Phys. 77 034401Google Scholar

    [36]

    Cui X, Zhai H 2010 Phys. Rev. A 81 041602(R)Google Scholar

    [37]

    Pilati S, Bertaina G, Giorgini S, Troyer M 2010 Phys. Rev. Lett. 105 030405Google Scholar

    [38]

    Mathy C J M, Parish M M, Huse D A 2011 Phys. Rev. Lett. 106 166404Google Scholar

    [39]

    Yi W, Zhang W 2012 Phys. Rev. Lett. 109 140402Google Scholar

    [40]

    Zhou L, Cui X, Yi W 2014 Phys. Rev. Lett. 112 195301Google Scholar

    [41]

    Nishida Y 2015 Phys. Rev. Lett. 114 115302Google Scholar

    [42]

    Yi W, Cui X 2015 Phys. Rev. A 92 013620Google Scholar

    [43]

    Landau L D 1933 Phys. Z. Sowjetunion 3 644

    [44]

    Pekar S I 1946 Zh. Eksp. Teor. Fiz. 16 335

    [45]

    Fröhlich H, Pelzer H, Zienau S 1950 Philos. Mag. 41 221Google Scholar

    [46]

    Fröhlich H 1954 Adv. Phys. 3 325Google Scholar

    [47]

    Feynman R P 1955 Phys. Rev. 97 660Google Scholar

    [48]

    Bardeen J, Baym G, Pines D 1967 Phys. Rev. 156 207Google Scholar

    [49]

    Li J, Schneider W D, Berndt R, Delley B 1998 Phys. Rev. Lett. 80 2893Google Scholar

    [50]

    Chikkatur A P, Görlitz A, Stamper-Kurn D M, Inouye S, Gupta S, Ketterle W 2000 Phys. Rev. Lett. 85 483Google Scholar

    [51]

    Catani J, Lamporesi G, Naik D, Gring M, Inguscio M, Minardi F, Kantian A, Giamarchi T 2012 Phys. Rev. A 85 023623Google Scholar

    [52]

    Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A 2012 Phys. Rev. Lett. 109 235301Google Scholar

    [53]

    Scelle R, Rentrop T, Trautmann A, Schuster T, Oberthaler M K 2013 Phys. Rev. Lett. 111 070401Google Scholar

    [54]

    Cucchietti F M, Timmermans E 2006 Phys. Rev. Lett. 96 210401Google Scholar

    [55]

    Tempere J, Casteels W, Oberthaler M K, Knoop S, Timmermans E, Devreese J T 2009 Phys. Rev. B 80 184504Google Scholar

    [56]

    Rath S P, Schmidt R 2013 Phys. Rev. A 88 053632Google Scholar

    [57]

    Qiu X, Cui X, Yi W 2016 Phys. Rev. A 94 051604(R)Google Scholar

    [58]

    Sun M, Cui X 2017 Phys. Rev. A 96 022707Google Scholar

    [59]

    Bai X D, Wang J, Liu X J, Xiong J, Deng F G, Hu H 2018 Phys. Rev. A 98 023627Google Scholar

    [60]

    Hu H, Mulkerin B C, Wang J, Liu X J 2018 Phys. Rev. A 98 013626Google Scholar

    [61]

    Chevy F 2006 Phys. Rev. A 74 063628Google Scholar

    [62]

    Combescot R, Recati A, Lobo C, Chevy F 2007 Phys. Rev. Lett. 98 180402Google Scholar

    [63]

    Schmidt R, Enss T 2011 Phys. Rev. A 83 063620Google Scholar

    [64]

    Massignan P, Bruun G M 2011 Eur. Phys. J. D 65 83Google Scholar

    [65]

    Deng T S, Lu Z C, Shi Y R, Chen J G, Zhang W, Yi W 2018 Phys. Rev. A 97 013635Google Scholar

    [66]

    Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M, Roati G 2017 Phys. Rev. Lett. 118 083602Google Scholar

    [67]

    Dyke P, Kuhnle E D, Whitlock S, Hu H, Mark M, Hoinka S, Lingham M, Hannaford P, Vale C J 2011 Phys. Rev. Lett. 106 105304Google Scholar

  • [1] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干.  , 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [2] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质.  , 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [3] 额尔敦朝鲁, 白旭芳, 韩超. 抛物量子点中强耦合磁双极化子内部激发态性质.  , 2014, 63(2): 027501. doi: 10.7498/aps.63.027501
    [4] 田寅, 冯灏, 孙卫国. 碱金属双原子分子部分电子态的完全振动能谱和离解能.  , 2011, 60(2): 023301. doi: 10.7498/aps.60.023301
    [5] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究.  , 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [6] 李文博, 李宓善. 类氢原子的相干态.  , 2008, 57(7): 3973-3977. doi: 10.7498/aps.57.3973
    [7] 余超凡, 梁国栋, 曹锡金. 一维分子晶体系统的极化子-孤子压缩态、系统基态性质和量子涨落.  , 2008, 57(7): 4402-4411. doi: 10.7498/aps.57.4402
    [8] 毛邦宁, 潘佰良, 陈 钢, 夏婷婷. 碱土金属原子激光的共振辐射俘获效应.  , 2006, 55(4): 1793-1797. doi: 10.7498/aps.55.1793
    [9] 高 琨, 刘晓静, 刘德胜, 解士杰. 极化子单激发态的反向极化研究.  , 2005, 54(11): 5324-5328. doi: 10.7498/aps.54.5324
    [10] 刘德胜, 赵俊卿, 魏建华, 解士杰, 梅良模. 聚对苯乙炔的基态、极化子与双极化子激发态及其稳定性.  , 1999, 48(7): 1327-1333. doi: 10.7498/aps.48.1327
    [11] 陈张海, 陈忠辉, 刘普霖, 石晓红, 史国良, 沈学础. GaAs中与施主高激发态有关的共振极化子效应.  , 1997, 46(3): 556-562. doi: 10.7498/aps.46.556
    [12] 许宗荣, 田之悦. 一维分子链中的极化子.  , 1995, 44(9): 1467-1470. doi: 10.7498/aps.44.1467
    [13] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率.  , 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [14] 解士杰;梅良模;孙鑫. 顺式聚乙炔中双极化子的新电子定域态.  , 1989, 38(8): 1339-1343. doi: 10.7498/aps.38.1339
    [15] 刘杰, 方可, 孙鑫. 电子相互作用对聚乙炔中极化子电子态的影响.  , 1989, 38(1): 9-15. doi: 10.7498/aps.38.9
    [16] 解士杰, 梅良模, 孙鑫. 聚对苯撑[poly(p-phenylene)]的基态、极化子和双极化子激发态.  , 1989, 38(9): 1506-1509. doi: 10.7498/aps.38.1506
    [17] 邢彪, 孙鑫. 聚乙炔极化子的新电子束缚态.  , 1988, 37(3): 507-510. doi: 10.7498/aps.37.507
    [18] 厉彦民, 章立源. 对角无序对三重态双极化子系统的超导电性的影响.  , 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [19] 厉彦民, 章立源. 三重态双极化子系统的超导与铁磁共存.  , 1987, 36(2): 157-164. doi: 10.7498/aps.36.157
    [20] 厉彦民, 章立源. 三重态双极化子的超导A相与B相.  , 1986, 35(12): 1616-1623. doi: 10.7498/aps.35.1616
计量
  • 文章访问数:  7841
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-31
  • 修回日期:  2018-12-29
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回
Baidu
map