-
本文研究运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学。在运动光格势强度和非线性作用调制强度较小的情况下,系统满足微扰条件,将Melnikov函数法应用于理论分析,得到了系统的Melnikov时空混沌判据。当系统不满足微扰条件时,数值模拟表明,对于原子间呈吸引作用的玻色-爱因斯坦凝聚体,非线性作用调制强度的增大可以加深系统的时空混沌程度。在某些参数区域,非线性作用调制频率对系统时空动力学行为具有重要影响。进一步的数值研究结果揭示,较大的化学势不仅可以抑制吸引系统的时空混沌,还可以抑制排斥系统的时空混沌。基于以上研究结果,在实验中可以根据需要规避或引发玻色-爱因斯坦凝聚系统的时空混沌。
-
关键词:
- 玻色-爱因斯坦凝聚 /
- 运动光格 /
- Melnikov混沌判据 /
- 混沌
The dynamical behaviors of Bose-Einstein condensates (BECs) depend largely on the nonlinear interactions between BEC atoms. The advancement of experimental techniques enables the rapid and effective modulation of the nonlinear interactions through Feshbach resonance technique. At present, both the time-varying nonlinear interaction and space-varying nonlinear interaction have been realized, respectively. This makes it possible to simultaneously modulate the nonlinear interactions in time and space through the combination of techniques. It will provide more options to conduct various studies by manipulating the BECs. Therefore, BECs with time- and space-varying interactions must possess unique advantages in studying BEC dynamics.
This paper studies the chaotic spatiotemporal dynamics of BECs with time- and space-varying nonlinear interactions in moving optical lattices. When the intensities of the moving optical lattice potential and the modulation of the nonlinear interaction are small, the system satisfies the perturbation conditions and the Melnikov-function method is used in the theoretical analyses to obtain the Melnikov spatiotemporal chaotic criterion of the system. When the system does not meet the perturbation conditions, numerical simulations show that, for a BEC with an attractive atomic interaction, increasing the modulation intensity of the nonlinear interaction can deepen the degree of spatiotemporal chaos in the system. In certain parameter regions, the modulation frequency of the nonlinear interaction can have a significant impact on the spatiotemporal dynamical behavior of the system. Further numerical research results show that larger chemical potentials can suppress the spatiotemporal chaos in not only the attractive but also the repulsive BECs. Based on the above research results, it is possible to avoid or trigger spatiotemporal chaos of BEC systems in experiments according to demand.-
Keywords:
- Bose-Einstein condensates /
- Travelling optical lattice /
- Melnikov chaotic criterion /
- chaos
-
[1] Anderson M H, Ensher J R, Matthews M R, E Wieman C 1995 Cornell E A, Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995Phys. Rev. Lett. 75 3969
[3] Efremidis N K, Sears S, Christodoulides D N, Fleischer J W, Segev M 2002Phys. Rev. E 66 046602
[4] BenDahan M, Peik E, Reichel J, Castin Y, Salomon C 1996Phys. Rev. Lett. 76 4508
[5] Anderson B P, Kasevich M A 1998Science 282 1686
[6] Liu S, Xiong H, Xu Z, Huang G 2003J. Phys. B 36 2083
[7] Gao J M, Di G W, Yu Z F, Tang R A, Xu H P, Xue J K 2024Acta Phys. Sin. 73130503 (in Chinese) [高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎2024 73130503]
[8] Pachos J K, Knight P L 2003Phys. Rev. Lett. 91 107902
[9] Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001Phys. Rev. Lett. 87 140402
[10] Bhattacherjee A B, Pietrzyk M 2008Cent. Eur. J. Phys. 6 26
[11] Choi D I, Niu Q 1999Phys. Rev. Lett. 82 2022
[12] Wu B, Niu Q 2001Phys. Rev. A 64061603(R)
[13] Cristiani M, O Morsch, Müller J H, Ciampini D, E Arimondo 2002 Phys. Rev. A 65 063612
[14] Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66023404
[15] Choi D I, Niu Q 2003Phys. Lett. A 318, 558
[16] Trombettoni A, Smerzi A 2001Phys. Rev. Lett. 86 2353
[17] Berg-Sørensen K, Mølmer K 1998Phys. Rev. A 58 1480
[18] Holthaus M 2000J. Opt. B: Quantum Semiclassical Opt. 2 589
[19] Cerimele M M, Chiofalo M L, Pistella F, Succi S, Tosi M P 2000Phys. Rev. E 62 1382
[20] Scott R G, Martin A M, Fromhold T M, Bujkiewicz S, Sheard F W, Leadbeater M 2003 Phys. Rev. Lett. 90110404
[21] Filho V S, Gammal A, Frederico T, Tomio L 2000Phys. Rev. A 62 033605(R)
[22] Hai W H, Lee C H, Chong G S, Shi L 2002Phys. Rev. E 66 026202
[23] Li F, Shu W X, Jiang J G, Luo H L, Ren Z Z 2007Eur. Phys. J. D 41 355
[24] Li F, Shu W X, Luo H L, Ren Z Z 2007Chin. Phys. 16 650
[25] Li F, Ren Z Z, Luo H L, Shu W X, Wu Q 2007Commun. Theor. Phys. 48 107
[26] Li F, Zhang D X, Li W B 2011Acta Phys. Sin. 60 120304(in Chinese) [李飞,张冬霞,李文斌2011 60120304]
[27] Li F, Zhang D X, Rong S G, Xu Y 2013J. Exp. Theor. Phys. 117 800
[28] Li F, He Z J, Li W W 2023Commun. Theor. Phys. 75 035501
[29] Li F, Li W W, He Z J 2023Rom. J. Phys. 68 103
[30] Chong G S, Hai W H, Xie Q T 2004Phys. Rev. E 70 036213
[31] Wang G F, Fu L B, Zhao H, Liu J 2005 Acta.Phys.Sin. 545003(in Chinese) [王冠芳、傅立斌、赵鸿、刘杰2005 545003]
[32] Zhu Q Q, Hai W H, Rong S G 2009 Phys. Rev. E 80016203
[33] Wang L, Liu J S, Li J, Zhou X L, Chen X R, Liu C F, Liu W M 2020Acta Phys. Sin. 69010303(in Chinese) [王力, 刘静思,李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明2020 69010303]
[34] Wang Q Q, Zhou Y S, Wang J, Fan X B, Shao K H, Zhao Y X, Song Y, Shi Y R 2023Acta Phys. Sin. 69010303(in Chinese) [王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁2023 72 10030
[35] Ruprecht P A, Edwards M, Burnett K, Clark C W 1996Phys. Rev. A 54 4178
[36] Denschlag J H Simsarian, J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002J. Phys. B 35 3095
[37] Mellish A S, Duffy G, McKenzie C, Geursen R, Wilson A C 2003Phys. Rev. A 68 051601(R)
[38] Fallani L, Cataliotti F S, Catani J, Fort C, Modugno M, Zawada M, Inguscio M 2003 Phys. Rev. Lett. 91240405
[39] Kagan Y, Surkov E L, Shlyapnikov G V 1997Phys. Rev. Lett. 792604
[40] Cornish S L, Claussen N R, Roberts J L, Cornell E A, Wieman C E 2000ibid. 851795
[41] Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2004Phys. Rev. Lett. 90 230401;
[42] Theocharis G, Schmelcher P, Kevrekidis P G, Frantzeskakis D J 2005Phys. Rev. A 72 033614
[43] Abdullaev F Kh, Garnier J 2005 Phys. Rev. A 72 061605(R)
[44] He J R, Li H M 2011Phys. Rev. E 83 066607
[45] Avelar A T, Bazeia D, Cardoso WB 2009Phys. Rev. A 79 025602(R)
[46] Wang D S, Hu X H, Liu W M 2010Phys. Rev. A 82 023612
[47] Beitia J B, García V M P, Vekslerchik V, Konotop V V 2008Phys. Rev. Lett. 100 164102
[48] Arroyo Meza L E, de Souza Dutra A, Hott M B 2012Phys. Rev. E 86 026605
[49] Arroyo Meza L E, Souza Dutra A de, Hott M B 2013Phys. Rev. E 88 053202
[50] Cardoso W B, Leão S A, Avelar A T, Bazeia D, Hussein M S 2010Phys. Lett. A 374 4594
[51] Wang D S, Song S W, Xiong B, Liu W M 2011Phys. Rev. A 84 053607
[52] Wang D S, Song S W, Liu W M 2012 Journal of Physics: Conference Series 400 012078
[53] He J R, Yi L 2014Phys. Lett. A 378 1085
[54] Rong S G, Hai W H, Xie Q T, Zhong H H 2012 Chaos 22033109
[55] Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004Phys. Rev. Lett. 92 160403; Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004J. Phys. B 37 175
[56] Proukakis N P, Parker N G, Barenghi C F, Adams C S 2004Phys. Rev. Lett. 93 130408
[57] Gardiner S A, Jaksch D, Dum R, Cirac J I, P. Zoller 2000Phys. Rev. A 62 023612
[58] Machholm M, Pethick CJ, Smith H 2003 Phys. Rev. A 67 053613
[59] Goldstein E V, Meystre P 1999Phys. Rev. A 59 1509
[60] Goldstein E V, Meystre P 1999 Phys. Rev. A 59, 3896
[61] Ling H Y 2001Phys. Rev. A 65 013608
[62] Liu S K, Liu S D 2012Nonlinear Equations in Physics (2nd edition) (Beijing: Peking University Press) p68(in Chinese) [刘式适,刘式达2012物理学中的非线性方程(第二版)(北京:北京大学出版社)第68页]
[63] Li F, Zhou B J, Shu W X, Luo H L, Huang Z Y, Tian L 2008Eur. Phys. J. D 5075
[64] Stavans J, Heslot F, Libchaber A 1985Phys. Rev. Lett. 55 596
[65] Bishop A R, Forest M G, McLaughlin D W, Overman II E A 1986 Physica D 23 293
计量
- 文章访问数: 31
- PDF下载量: 0
- 被引次数: 0