-
星载超高精度惯性传感器是空间引力波探测任务的核心载荷之一。运行环境差异、卫星工质消耗和电子器件老化会导致惯性传感器主要在轨工作参数与地面定标结果不一致,影响数据产品精度,进而影响科学数据质量,需开展惯性传感器工作参数在轨标定工作。本文针对空间引力波探测太极计划残余加速度噪声优于3×10-15m/s2/Hz1/2@3mHz的超高精度指标要求,结合太极计划惯性传感器设计布局以及实际噪声模型,设计了惯性传感器标度因数和质心偏差矢量参数在轨定标方案,并通过仿真实验验证了方案的可行性。仿真结果表明,标度因数的在轨定标误差< 300ppm,质心偏差在轨定标单轴误差< 300ppm,满足太极计划惯性传感器工作参数在轨定标精度要求。The Taiji program is a space mission designed to detect low-frequency gravitational waves. The mission's success hinges on the precise operation of its core payloads, particularly the inertial sensors, which are responsible for measuring the residual acceleration noise of the test masses. The duration of a space-based gravitational wave detection mission spans 3 to 5 years. During this period, the shift in the satellite’s center of mass due to propellant consumption and other factors, as well as the drift in the scale factors caused by electronic component aging, will gradually degrade the accuracy of inertial sensor data. Therefore, it is necessary to perform regular in-orbit calibration of inertial sensor parameters.
In this work, we developed a calibration scheme that actively applies controlled satellite oscillations, tailored to the installation layout of the inertial sensors in the Taiji program and the noise models. For the calibration of scale factors, high-precision star sensors are used to measure the satellite attitude signal, which is then combined with the driving voltage data from inertial sensors. By leveraging the linear relationship between these signals, the scale factors are estimated using an extended Kalman Filter. For the calibration of center of mass (CoM) offsets, the calibrated scale factors are utilized, along with the driving voltage data from the front-end electronics of inertial sensors, to derive the test mass's angular acceleration, linear acceleration, and angular velocity. These parameters are then used to complete the CoM offset calibration according to the dynamic equation.
The feasibility of the proposed calibration scheme was validated through a simulation experiment. The results demonstrate that the scale factors can be calibrated with a relative accuracy of 33 ppm, 27 ppm, and 173 ppm for the three axes, respectively, meeting the requirement of being within 300 ppm. The CoM offsets were calibrated with an accuracy of $\delta_{\boldsymbol{r}_1}=[15 \mu \mathrm{~m}, 31 \mu \mathrm{~m}, 34 \mu \mathrm{~m}], \delta_{\boldsymbol{r}_2}=[5 \mu \mathrm{~m}, 15 \mu \mathrm{~m}, 13 \mu \mathrm{~m}]$ satisfying the 75μm threshold. These results confirm that the proposed scheme can effectively maintain the inertial sensors' performance within the required accuracy range.
In conclusion, the calibration scheme developed in this study is crucial for maintaining the high performance of inertial sensors in the Taiji program. By achieving precise calibration of the scale factors and center of mass offsets within the required accuracy ranges, the scheme ensures the reliability of inertial sensor data, thereby significantly enhance the sensitivity of space-based gravitational wave detection, paving the way for groundbreaking discoveries in astrophysics and cosmology.-
Keywords:
- Inertial Sensor /
- In-orbit Calibration /
- Scale factor /
- Center of Mass Offset
-
[1] Marion F, LIGO Scientific Collaboration 2017Nuovo Cimento C 39 310
[2] Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B, Straniero N, Teillon J, Cagnoli G 2017Appl. Opt. 56C11
[3] Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88173
[4] KAGRA collaboration 2019Nat. Astron. 3 35
[5] Black E D, Gutenkunst R N 2003Am. J. Phys. 71 365
[6] Jani K, Shoemaker D, Cutler C 2019Nat. Astron. 4260
[7] Jennrich O 2009Class. Quantum Grav. 26 153001
[8] Sun Q C, Wang G Q, Gong X F, Lau Y K, Xu S N, Amaro-Seoane P, Bai S, Bian X, Cao Z J, Chen G R, Chen X, Ding Y W, Dong P, Gao W, Heinzel G, Li M, Li S, Liu F K, Luo Z R, Shao M X, Spurzem R, Sun B S, Tang W L, Wang Y, Xu P, Yu P, Yuan Y F, Zhang X M, Zhou Z B 2014J. Phys.: Conf. Ser. 610 12011
[9] Karsten Danzmann and the LISA study team 1996Class. Quantum Grav. 3 A247
[10] Audley H, Babak S, Baker J, Barausse E, Sopuerta C F 2017Tp.umu.se 548 411
[11] Sato S, Aso Y, Mino Y, Miyakawa O, Somiya K 2017J. Phys.: Conf. Ser. 840 012010
[12] Kawamura S, Ando M, Seto N, Sato S, Nakamura T, Tsubono K, Kanda N, Tanaka T, Yokoyama J, Funaki I, Numata K, Ioka K, Takashima T, Agatsuma K, Akutsu T, Aoyanagi K, Arai K, Araya A, Asada H, Aso Y, Chen D, Chiba T, Ebisuzaki T, Ejiri Y, Enoki M, Eriguchi Y, Fujimoto M-K, Fujita R, Fukushima M, Futamase T, Harada T, Hashimoto T, Hayama K, Hikida W, Himemoto Y, Hirabayashi H, Hiramatsu T, Hong F-L, Horisawa H, Hosokawa M, Ichiki K, Ikegami T, Inoue K, Ishidoshiro K, Ishihara H, Ishikawa T, Ishizaki H, Ito H, Itoh Y, Izumi K, Kawano I, Kawashima N, Kawazoe F, Kishimoto N, Kiuchi K, Kobayashi S, Kohri K, Koizumi H, Kojima Y, Kokeyama K, Kokuyama W, Kotake K, Kozai Y, Kunimori H, Kuninaka H, Kuroda K, Kuroyanagi S, Maeda K-i, Matsuhara H, Matsumoto N, Michimura Y, Miyakawa O, Miyamoto U, Miyamoto S, Miyoki S, Morimoto M Y, Morisawa T, Moriwaki S, Mukohyama S, Musha M, Nagano S, Naito I, Nakamura K, Nakano H, Nakao K, Nakasuka S, Nakayama Y, Nakazawa K, Nishida E, Nishiyama K, Nishizawa A, Niwa Y, Noumi T, Obuchi Y, Ohashi M, Ohishi N, Ohkawa M, Okada K, Okada N, Oohara K, Sago N, Saijo M, Saito R, Sakagami M, Sakai S-i, Sakata S, Sasaki M, Sato T, Shibata M, Shinkai H, Shoda A, Somiya K, Sotani H, Sugiyama N, Suwa Y, Suzuki R, Tagoshi H, Takahashi F, Takahashi K, Takahashi K, Takahashi R, Takahashi R, Takahashi T, Takahashi H, Takahashi T, Takano T, Tanaka N, Taniguchi K, Taruya A, Tashiro H, Torii Y, Toyoshima M, Tsujikawa S, Tsunesada Y, Ueda A, Ueda K-i, Utashima M, Wakabayashi Y, Yagi K, Yamakawa H, Yamamoto K, Yamazaki T, Yoo C-M, Yoshida S, Yoshino T, Sun K-X 2011Class. Quantum Grav. 289
[13] Hu W R, Wu Y L 2017Natl. Sci. Rev. 4 685
[14] Wu Y L, Luo Z R, Wang J Y, Bai M, Zou Z M 2021Commun. Phys. 4 34
[15] Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M 2015Class. Quantum Grav. 33 035010
[16] Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020J. Deep Space Explor. 7 3(in Chinese) [罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞2020深空探测学报7 3]
[17] Luo Z R, Zhang M, Wu Y L 2022Chinese Journal of Space Science 42536
[18] Sun K X, Johann U, Debra1 D B, Byer R L 2007 J. Phys. Conf. Ser. 60 272
[19] Wang S X, Guo W C, Zhao P -A, Wang J, Dong P, Xu P, Luo Z R, Qi K Q 2024Sci Sin-Phys Mech Astron.54 91(in Chinese) [王少鑫,郭纬川,赵平安,王娟,董鹏,徐鹏,罗子人,齐克奇2024中国科学:物理学力学天文学54 91]
[20] Wei X T, Huang L, Shen T Y, Cai Z M, He J B 2023Phys. Rev. D 108082001
[21] Visser P N A M, Ijssel J V D 2003Adv. Space Res. 311905
[22] Lenoir B, Christophe B, Reynaud S 2012Measurement 46 1411
[23] Visser P N A M 2008J. Geod. 82591
[24] Wang F R 2003Ph. D. Dissertation (Austin:The University of Texas at Austin)
[25] Zhang H Y, Xu P, Ye Z, Ye D, Qiang L-E, Luo Z R, Qi K Q, Wang S X, Cai Z M, Wang Z L, Lei J G, Wu Y L 2023Remote Sens. 15 3817
[26] Ruan Y D, Zhang Z H, Jia J X, Gu Y N, Zhang S D, Cui X G, Hong W, Bai Y Z, Tian P F 2024Acta Phys. Sin. 73 220401(in Chinese)[阮远东,章志昊,贾茳勰,顾煜宁,张善端,崔旭高,洪葳,白彦峥,田朋飞2024 73220401]
[27] Lupi F 2019M.S. Thesis (Delft:Delft University of Technology)
[28] Blarre L, Ouaknine J, Oddos-Marcel L, Brévannes L, Martinez P-E, Belin É 2006AIAA Guidance, Navigation and Control Conference, Colorado, August 21–24, 2006 p6046
[29] Yuan L, Wang M M, Wu Y P, Wang L, Zheng R 2020Chin. J. Aeronaut. 417(in Chinese) [袁利,王苗苗,武延鹏,王利,郑然航空学报417]
[30] Liu H, Niu X, Zeng M, Wang S, Cui K, Yu D 2022 Acta Astronaut. 193 496510
[31] Yu D R,Niu X, Wang T B,Wang S S,Zeng M,Cui K,Liu H,Tu L C,Li Z,Huang X Q, Liu J P, Shen Y, Peng H S, Yang C, Song P Y, Kuang S Y, Zhang K, Suo X C, Huang X B, Liu X H, Wang X D, Long J, Fu X J, Gao C G, Yang Juan, Xia Xu, Fu Y L, Hu Z, Kang X M, Wu Q Q, Pang A P, Zhou H B 2021Acta Sci. Nat. Univ. Sunyatseni 60 194(in Chinese)[于达仁, 牛翔, 王泰卜, 王尚胜, 曾明, 崔凯, 刘辉, 涂良成, 李祝, 黄祥青, 刘建平,沈岩,彭慧生,杨铖,宋培义,匡双阳,张开,索晓晨,黄潇博,刘旭辉,汪旭东,龙军,付新菊,高晨光,杨涓,夏旭,付瑜亮,胡展,康小明,吴勤勤,庞爱平,周鸿博2021中山大学学报: 自然科学版60194]
[32] Zhang J 2016Ph. D. Dissertation(Beijing: Beijing Institute of Control Engineering, Chinese Academy of Space Technology) (in Chinese) [张俊2016博士学位论文(北京:中国空间技术研究院,北京控制工程研究所)]
[33] Montenbruck O, Gill E (translated by Wang J S, Zhu K J, Hu X G) 2012Satellite Orbits: Models, Methods and Applications (Beijing:National Defense Industry Press) pp73-79(in Chinese) [门斯布吕克, 吉尔(王家松、祝开建、胡小工译)2012卫星轨道:模型、方法和应用(北京:国防工业出版社)第73—79页]
计量
- 文章访问数: 172
- PDF下载量: 15
- 被引次数: 0