搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测太极计划惯性传感器标度因数与质心偏差的在轨定标方案设计

刘畅 魏晓通 张昊越 邓琼 梁博 强丽娥 徐鹏 齐克奇 王少鑫

引用本文:
Citation:

空间引力波探测太极计划惯性传感器标度因数与质心偏差的在轨定标方案设计

刘畅, 魏晓通, 张昊越, 邓琼, 梁博, 强丽娥, 徐鹏, 齐克奇, 王少鑫

In-orbit Calibration Scheme for the Scale Factors and Center of Mass Offsets of Inertial Sensor of Taiji Program

LIU Chang, WEI Xiaotong, ZHANG Haoyue, DENG Qiong, LIANG Bo, QIANG Li-E, XU Peng, QI Keqi, WANG Shaoxin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 星载超高精度惯性传感器是空间引力波探测任务的核心载荷之一。运行环境差异、卫星工质消耗和电子器件老化会导致惯性传感器主要在轨工作参数与地面定标结果不一致,影响数据产品精度,进而影响科学数据质量,需开展惯性传感器工作参数在轨标定工作。本文针对空间引力波探测太极计划残余加速度噪声优于3×10-15m/s2/Hz1/2@3mHz的超高精度指标要求,结合太极计划惯性传感器设计布局以及实际噪声模型,设计了惯性传感器标度因数和质心偏差矢量参数在轨定标方案,并通过仿真实验验证了方案的可行性。仿真结果表明,标度因数的在轨定标误差< 300ppm,质心偏差在轨定标单轴误差< 300ppm,满足太极计划惯性传感器工作参数在轨定标精度要求。
    The Taiji program is a space mission designed to detect low-frequency gravitational waves. The mission's success hinges on the precise operation of its core payloads, particularly the inertial sensors, which are responsible for measuring the residual acceleration noise of the test masses. The duration of a space-based gravitational wave detection mission spans 3 to 5 years. During this period, the shift in the satellite’s center of mass due to propellant consumption and other factors, as well as the drift in the scale factors caused by electronic component aging, will gradually degrade the accuracy of inertial sensor data. Therefore, it is necessary to perform regular in-orbit calibration of inertial sensor parameters.
    In this work, we developed a calibration scheme that actively applies controlled satellite oscillations, tailored to the installation layout of the inertial sensors in the Taiji program and the noise models. For the calibration of scale factors, high-precision star sensors are used to measure the satellite attitude signal, which is then combined with the driving voltage data from inertial sensors. By leveraging the linear relationship between these signals, the scale factors are estimated using an extended Kalman Filter. For the calibration of center of mass (CoM) offsets, the calibrated scale factors are utilized, along with the driving voltage data from the front-end electronics of inertial sensors, to derive the test mass's angular acceleration, linear acceleration, and angular velocity. These parameters are then used to complete the CoM offset calibration according to the dynamic equation.
    The feasibility of the proposed calibration scheme was validated through a simulation experiment. The results demonstrate that the scale factors can be calibrated with a relative accuracy of 33 ppm, 27 ppm, and 173 ppm for the three axes, respectively, meeting the requirement of being within 300 ppm. The CoM offsets were calibrated with an accuracy of $\delta_{\boldsymbol{r}_1}=[15 \mu \mathrm{~m}, 31 \mu \mathrm{~m}, 34 \mu \mathrm{~m}], \delta_{\boldsymbol{r}_2}=[5 \mu \mathrm{~m}, 15 \mu \mathrm{~m}, 13 \mu \mathrm{~m}]$ satisfying the 75μm threshold. These results confirm that the proposed scheme can effectively maintain the inertial sensors' performance within the required accuracy range.
    In conclusion, the calibration scheme developed in this study is crucial for maintaining the high performance of inertial sensors in the Taiji program. By achieving precise calibration of the scale factors and center of mass offsets within the required accuracy ranges, the scheme ensures the reliability of inertial sensor data, thereby significantly enhance the sensitivity of space-based gravitational wave detection, paving the way for groundbreaking discoveries in astrophysics and cosmology.
  • [1]

    Marion F, LIGO Scientific Collaboration 2017Nuovo Cimento C 39 310

    [2]

    Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B, Straniero N, Teillon J, Cagnoli G 2017Appl. Opt. 56C11

    [3]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88173

    [4]

    KAGRA collaboration 2019Nat. Astron. 3 35

    [5]

    Black E D, Gutenkunst R N 2003Am. J. Phys. 71 365

    [6]

    Jani K, Shoemaker D, Cutler C 2019Nat. Astron. 4260

    [7]

    Jennrich O 2009Class. Quantum Grav. 26 153001

    [8]

    Sun Q C, Wang G Q, Gong X F, Lau Y K, Xu S N, Amaro-Seoane P, Bai S, Bian X, Cao Z J, Chen G R, Chen X, Ding Y W, Dong P, Gao W, Heinzel G, Li M, Li S, Liu F K, Luo Z R, Shao M X, Spurzem R, Sun B S, Tang W L, Wang Y, Xu P, Yu P, Yuan Y F, Zhang X M, Zhou Z B 2014J. Phys.: Conf. Ser. 610 12011

    [9]

    Karsten Danzmann and the LISA study team 1996Class. Quantum Grav. 3 A247

    [10]

    Audley H, Babak S, Baker J, Barausse E, Sopuerta C F 2017Tp.umu.se 548 411

    [11]

    Sato S, Aso Y, Mino Y, Miyakawa O, Somiya K 2017J. Phys.: Conf. Ser. 840 012010

    [12]

    Kawamura S, Ando M, Seto N, Sato S, Nakamura T, Tsubono K, Kanda N, Tanaka T, Yokoyama J, Funaki I, Numata K, Ioka K, Takashima T, Agatsuma K, Akutsu T, Aoyanagi K, Arai K, Araya A, Asada H, Aso Y, Chen D, Chiba T, Ebisuzaki T, Ejiri Y, Enoki M, Eriguchi Y, Fujimoto M-K, Fujita R, Fukushima M, Futamase T, Harada T, Hashimoto T, Hayama K, Hikida W, Himemoto Y, Hirabayashi H, Hiramatsu T, Hong F-L, Horisawa H, Hosokawa M, Ichiki K, Ikegami T, Inoue K, Ishidoshiro K, Ishihara H, Ishikawa T, Ishizaki H, Ito H, Itoh Y, Izumi K, Kawano I, Kawashima N, Kawazoe F, Kishimoto N, Kiuchi K, Kobayashi S, Kohri K, Koizumi H, Kojima Y, Kokeyama K, Kokuyama W, Kotake K, Kozai Y, Kunimori H, Kuninaka H, Kuroda K, Kuroyanagi S, Maeda K-i, Matsuhara H, Matsumoto N, Michimura Y, Miyakawa O, Miyamoto U, Miyamoto S, Miyoki S, Morimoto M Y, Morisawa T, Moriwaki S, Mukohyama S, Musha M, Nagano S, Naito I, Nakamura K, Nakano H, Nakao K, Nakasuka S, Nakayama Y, Nakazawa K, Nishida E, Nishiyama K, Nishizawa A, Niwa Y, Noumi T, Obuchi Y, Ohashi M, Ohishi N, Ohkawa M, Okada K, Okada N, Oohara K, Sago N, Saijo M, Saito R, Sakagami M, Sakai S-i, Sakata S, Sasaki M, Sato T, Shibata M, Shinkai H, Shoda A, Somiya K, Sotani H, Sugiyama N, Suwa Y, Suzuki R, Tagoshi H, Takahashi F, Takahashi K, Takahashi K, Takahashi R, Takahashi R, Takahashi T, Takahashi H, Takahashi T, Takano T, Tanaka N, Taniguchi K, Taruya A, Tashiro H, Torii Y, Toyoshima M, Tsujikawa S, Tsunesada Y, Ueda A, Ueda K-i, Utashima M, Wakabayashi Y, Yagi K, Yamakawa H, Yamamoto K, Yamazaki T, Yoo C-M, Yoshida S, Yoshino T, Sun K-X 2011Class. Quantum Grav. 289

    [13]

    Hu W R, Wu Y L 2017Natl. Sci. Rev. 4 685

    [14]

    Wu Y L, Luo Z R, Wang J Y, Bai M, Zou Z M 2021Commun. Phys. 4 34

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M 2015Class. Quantum Grav. 33 035010

    [16]

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020J. Deep Space Explor. 7 3(in Chinese) [罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞2020深空探测学报7 3]

    [17]

    Luo Z R, Zhang M, Wu Y L 2022Chinese Journal of Space Science 42536

    [18]

    Sun K X, Johann U, Debra1 D B, Byer R L 2007 J. Phys. Conf. Ser. 60 272

    [19]

    Wang S X, Guo W C, Zhao P -A, Wang J, Dong P, Xu P, Luo Z R, Qi K Q 2024Sci Sin-Phys Mech Astron.54 91(in Chinese) [王少鑫,郭纬川,赵平安,王娟,董鹏,徐鹏,罗子人,齐克奇2024中国科学:物理学力学天文学54 91]

    [20]

    Wei X T, Huang L, Shen T Y, Cai Z M, He J B 2023Phys. Rev. D 108082001

    [21]

    Visser P N A M, Ijssel J V D 2003Adv. Space Res. 311905

    [22]

    Lenoir B, Christophe B, Reynaud S 2012Measurement 46 1411

    [23]

    Visser P N A M 2008J. Geod. 82591

    [24]

    Wang F R 2003Ph. D. Dissertation (Austin:The University of Texas at Austin)

    [25]

    Zhang H Y, Xu P, Ye Z, Ye D, Qiang L-E, Luo Z R, Qi K Q, Wang S X, Cai Z M, Wang Z L, Lei J G, Wu Y L 2023Remote Sens. 15 3817

    [26]

    Ruan Y D, Zhang Z H, Jia J X, Gu Y N, Zhang S D, Cui X G, Hong W, Bai Y Z, Tian P F 2024Acta Phys. Sin. 73 220401(in Chinese)[阮远东,章志昊,贾茳勰,顾煜宁,张善端,崔旭高,洪葳,白彦峥,田朋飞2024 73220401]

    [27]

    Lupi F 2019M.S. Thesis (Delft:Delft University of Technology)

    [28]

    Blarre L, Ouaknine J, Oddos-Marcel L, Brévannes L, Martinez P-E, Belin É 2006AIAA Guidance, Navigation and Control Conference, Colorado, August 21–24, 2006 p6046

    [29]

    Yuan L, Wang M M, Wu Y P, Wang L, Zheng R 2020Chin. J. Aeronaut. 417(in Chinese) [袁利,王苗苗,武延鹏,王利,郑然航空学报417]

    [30]

    Liu H, Niu X, Zeng M, Wang S, Cui K, Yu D 2022 Acta Astronaut. 193 496510

    [31]

    Yu D R,Niu X, Wang T B,Wang S S,Zeng M,Cui K,Liu H,Tu L C,Li Z,Huang X Q, Liu J P, Shen Y, Peng H S, Yang C, Song P Y, Kuang S Y, Zhang K, Suo X C, Huang X B, Liu X H, Wang X D, Long J, Fu X J, Gao C G, Yang Juan, Xia Xu, Fu Y L, Hu Z, Kang X M, Wu Q Q, Pang A P, Zhou H B 2021Acta Sci. Nat. Univ. Sunyatseni 60 194(in Chinese)[于达仁, 牛翔, 王泰卜, 王尚胜, 曾明, 崔凯, 刘辉, 涂良成, 李祝, 黄祥青, 刘建平,沈岩,彭慧生,杨铖,宋培义,匡双阳,张开,索晓晨,黄潇博,刘旭辉,汪旭东,龙军,付新菊,高晨光,杨涓,夏旭,付瑜亮,胡展,康小明,吴勤勤,庞爱平,周鸿博2021中山大学学报: 自然科学版60194]

    [32]

    Zhang J 2016Ph. D. Dissertation(Beijing: Beijing Institute of Control Engineering, Chinese Academy of Space Technology) (in Chinese) [张俊2016博士学位论文(北京:中国空间技术研究院,北京控制工程研究所)]

    [33]

    Montenbruck O, Gill E (translated by Wang J S, Zhu K J, Hu X G) 2012Satellite Orbits: Models, Methods and Applications (Beijing:National Defense Industry Press) pp73-79(in Chinese) [门斯布吕克, 吉尔(王家松、祝开建、胡小工译)2012卫星轨道:模型、方法和应用(北京:国防工业出版社)第73—79页]

  • [1] 程奥迪, 余辉洋, 汪辰涛, 范梓阳, 张佳琪, 吴可滢, 黄见秋. 基于PVDF-EtP纳米纤维膜的压电性能研究及其在压力传感器中的应用.  , doi: 10.7498/aps.74.20241680
    [2] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展.  , doi: 10.7498/aps.71.20211883
    [3] 刘震, 杨晓超, 张效信, 张珅毅, 余庆龙, 张鑫, 薛炳森, 郭建广, 宗卫国, 沈国红, 白超平, 周平, 冀文涛. 风云四号A星和GOES-13相对论电子观测数据在轨交叉定标及数据融合研究.  , doi: 10.7498/aps.68.20190433
    [4] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法.  , doi: 10.7498/aps.67.20172352
    [5] 蒋锐, 杨震. 基于质心迭代估计的无线传感器网络节点定位算法.  , doi: 10.7498/aps.65.030101
    [6] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离.  , doi: 10.7498/aps.63.050502
    [7] 刘浩然, 尹文晓, 董明如, 刘彬. 一种强容侵能力的无线传感器网络无标度拓扑模型研究.  , doi: 10.7498/aps.63.090503
    [8] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究.  , doi: 10.7498/aps.63.170506
    [9] 韩丽, 刘彬, 李雅倩, 赵磊静. 能量异构的无线传感器网络加权无标度拓扑研究.  , doi: 10.7498/aps.63.150504
    [10] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究.  , doi: 10.7498/aps.63.190504
    [11] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析.  , doi: 10.7498/aps.63.110205
    [12] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法.  , doi: 10.7498/aps.62.070201
    [13] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究.  , doi: 10.7498/aps.60.054215
    [14] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究.  , doi: 10.7498/aps.60.114203
    [15] 顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 多角度偏振遥感相机DPC在轨偏振定标.  , doi: 10.7498/aps.60.070702
    [16] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用.  , doi: 10.7498/aps.59.4014
    [17] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析.  , doi: 10.7498/aps.59.5904
    [18] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究.  , doi: 10.7498/aps.58.3821
    [19] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏. 硅陷阱探测器在350—1064 nm波段的绝对光谱响应度定标.  , doi: 10.7498/aps.58.6273
    [20] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器.  , doi: 10.7498/aps.56.308
计量
  • 文章访问数:  172
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-24

/

返回文章
返回
Baidu
map