搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风云四号A星和GOES-13相对论电子观测数据在轨交叉定标及数据融合研究

刘震 杨晓超 张效信 张珅毅 余庆龙 张鑫 薛炳森 郭建广 宗卫国 沈国红 白超平 周平 冀文涛

引用本文:
Citation:

风云四号A星和GOES-13相对论电子观测数据在轨交叉定标及数据融合研究

刘震, 杨晓超, 张效信, 张珅毅, 余庆龙, 张鑫, 薛炳森, 郭建广, 宗卫国, 沈国红, 白超平, 周平, 冀文涛

On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4A and GOES-13

Liu Zhen, Yang Xiao-Chao, Zhang Xiao-Xin, Zhang Shen-Yi, Yu Qing-Long, Zhang Xin, Xue Bing-Sen, Guo Jian-Guang, Zong Wei-Guo, Shen Guo-Hong, Bai Chao-Ping, Zhou Ping, Ji Wen-Tao
PDF
HTML
导出引用
  • 地球磁层空间的相对论电子通过内部充放电效应, 能够导致在轨航天器彻底失效. 由于对这种空间粒子的特性和物理机制仍不清楚, 磁层空间相对论电子一直是空间环境探测和空间科学研究的重要对象. 开展相关磁层空间环境特性的研究和粒子辐射环境建模等, 需要同时使用来自不同卫星、不同探测器的观测数据. 消除不同探测器之间的系统偏差, 实现不同来源数据的融合, 是开展相关研究的必要前提. 本文对我国最新的地球同步轨道卫星—风云四号A星(FY-4A)和同类轨道的美国GOES-13卫星相对论电子(> 2 MeV)观测数据, 开展在轨交叉定标及数据融合研究. 本文严格筛选出地磁宁静期(Kp < 2)的观测数据, 以保证研究对象是被地磁场稳定捕获的辐射带粒子. 根据辐射带粒子的物理特性, 即3个绝热不变量的基础之上, 以Liouville定理为依据, 在漂移壳Lm坐标下比较两颗卫星观测到的电子通量, 得到两颗卫星相对论电子观测之间的系统偏差. 依据该结果, 进行数据融合处理, 结果表明系统偏差得以很好地消除. 通过本项研究工作, 得到了国际上重要的两个地球同步轨道相对论电子观测系统之间的偏差, 并根据该研究成果, 成功实现两个探测系统观测数据之间的融合, 为后续的理论和应用研究工作打下了坚实的基础, 也为地球同步轨道其他能道高能电子观测数据的在轨交叉定标和数据融合提供了参考方法.
    Magnetospheric relativistic electrons can destroy on-orbit spacecrafts completely by internal charging and discharging effects. As the characteristics and physical mechanism of this space particle are still unclear, magnetospheric relativistic electrons have always been an important object of space environment exploration and space science research. For studying the physical mechanisms and developing models relating to magnetospheric relativistic electrons, it is necessary to use the observations from different satellites and detectors at the same time. Eliminating the systematic deviation between different detection systems to assimilate the observations from different sources is essentially required by such researches. In this work, the on-orbit cross-calibration and assimilation for relativistic electron (> 2 MeV) observations from FengYun 4A and GOES-13 are performed. In this work, only the observations obtained under very quiet geomagnetic conditions (Kp < 2) are adopted to ensure that the objects of study are the radiation belt particles, which are stably captured by the geomagnetic field. According to the physical characteristics of the radiation belt particles, that is, the three adiabatic invariants, and based on the Liouville theorem, the phase space density of the stably captured particles is unchanged. In this paper, the relativistic electron flux data of energy > 2 MeV and instrument pitch angle are in the east and west direction respectively. If the particles’ energy is the same, then their corresponding μ values are the same, and their particles’ directions are the same, then their corresponding J values are the same, and the Liouville theorem can be simplified as the drift shell Lm is the same, the fluxes are the same, and the electron fluxes observed by the two satellites are compared in the drift shell Lm coordinate. The systematic deviation between the two satellites’ relativistic electronic observations can be obtained. According to this result, the data assimilation is carried out, and the results show that the system deviation can be removed well. By this research work, the systematic deviation between two important relativistic electron detection systems in geosynchronous orbit is obtained. Based on the obtained systematic deviations, the assimilations for observations from the two detection systems are achieved. This work lays a solid foundation for the follow-up theoretical and applied researches, and also provides the methods for on-orbit cross-calibration and observation assimilation which could be referred to when other electronic observations on geosynchronous orbit are dealt with.
      通信作者: 杨晓超, yxc@nssc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11603028)资助的课题.
      Corresponding author: Yang Xiao-Chao, yxc@nssc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11603028).
    [1]

    赵华, 朱光武, 王世金, 高玉芬, 刘振兴 2003 中国科学D辑 33 89Google Scholar

    Zhao H, Zhu G W, Wang S J, Gao Y F, Liu Z X 2003 Sci. ChinaD 33 89Google Scholar

    [2]

    黄建国, 韩建伟 2010 59 2907Google Scholar

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907Google Scholar

    [3]

    宗秋刚, 袁憧憬, 王永福, 苏振鹏 2013 中国科学: 地球科学 43 951

    Zong Q G, Yuan C J, Wang Y F, Su Z P 2013 Sci. China: Earth Sci. 43 951

    [4]

    Friedel R H W, Reeves G, Belian D, Cayton T, Mouikis C, Korth A, Blake B, Fennel J, SelesnickR, Baker D, Onsagers T, Kaneka1 S 2000 Adv. Space Res. 26 93

    [5]

    Chen Y, Friedel R H W, Reeves G D, Onsager T G, Thomsen M F 2005 J. Geophy. Res. 110 A10210Google Scholar

    [6]

    Chen Y, Friedel R H W, Reeves G D, Cayton T E, Christensen R 2007 J. Geophys. Res. 112 A11214Google Scholar

    [7]

    Yang X C, Ni B B, Yu J, Zhang Y, Zhang X X, Sun Y Q 2017 J. Geophys. Res. 122 6255Google Scholar

    [8]

    Friedel R H W, Bourdarie S, Cayton T E 2005 Space Weather 3 S09B04

    [9]

    Meredith Nigel P, Horne Richard B, Isles John D 2015 Space Weather 13 170

    [10]

    Ganushkina N Yu, Sillanpää I, Welling D 2019 Space Weather 17 687Google Scholar

    [11]

    王馨悦, 王春琴, 杨晓超, 王世金 2008 地球 55 611Google Scholar

    Wang X Y, Wang C Q, Yang X C, Wang S J 2008 Chin. J. Geophys. 55 611Google Scholar

    [12]

    于超, 李嘉巍, 张效信, 李传起, 王春琴, 王世金 2012 地球 55 2835Google Scholar

    Yu C, Li J W, Zhang X X, Li C Q, Wang C Q, Wang S J 2012 Chin. J. Geophys. 55 2835Google Scholar

    [13]

    Li X L, Temerin M A 2001 Space Sci. Rev. 95 569Google Scholar

    [14]

    徐荣栏, 李磊 2005 磁层粒子动力学 (北京: 科学出版社) 第84—92页

    Xu R L, Li L 2005 Magnetosphereic Partical Dynamics (Beijing: Science Press) pp84–92 (in Chinese)

    [15]

    涂传治 1988 日地空间物理学: 行星际与磁层(下册) (北京: 科学出版社) 第111—118页

    Tu C Z 1988 Solar-Terrestrial Space Physics: Interplanetary and Magnetosphere (Vol.2) (Beijing: Science Press) pp111–118 (in Chinese)

    [16]

    McCollough J P, Gannon J L, Baker D N, Gehmeyr M 2008 Space Weather 6 S10001

    [17]

    Yang X C, Zhu G W, Zhang X X, Sun Y Q, Liang J B, Wei X H 2014 J. Geophys. Res. Space Phys. 119 9038

  • 图 1  2017年3月3日至9日FY-4A和GOES-13卫星高能(> 2 MeV)电子积分通量

    Fig. 1.  Fluxes of relativistic electron (> 2 MeV) from FY-4A and GOES-13 during March 3–9, 2017.

    图 2  FY-4A和GOES-13相对论电子观测数据对应的Lm值计算结果

    Fig. 2.  Lm values calculated by T02 for FY-4A and GOES-13 relativistic electron observations.

    图 3  正东方向FY-4A和GOES-13“一一对应”的相对论电子通量及拟合得到的系统偏差

    Fig. 3.  Corresponding relationship between relativistic electron fluxes from FY-4A and GOES-13 detectors facing east and the system deviation between them.

    图 4  正西方向FY-4A和GOES-13“一一对应”的相对论电子通量及拟合得到的系统偏差

    Fig. 4.  Corresponding relationship between relativistic electron fluxes from FY-4A and GOES-13 detectors facing west and the system deviation between them.

    图 5  正东方向FY-4A和GOES-13相对论电子通量数据拟合

    Fig. 5.  Relativistic electron flux fitting of FY-4A and GOES-13 detectors facing east.

    图 6  正东方向FY-4A和GOES-13相对论电子通量拟合

    Fig. 6.  Relativistic electron flux fitting of FY-4A and GOES-13 detectors facing west.

    表 1  FY-4A和GOES-13高能电子观测能谱

    Table 1.  Energy spectrum of FY-4A and GOES-13 energetic electron detector.

    卫星探测器电子能量
    FY-4AHET2 ≥ 1.5 MeV
    ≥ 2 MeV
    ≥ 3 Mev
    GOES-13EPEAED> 0.6 MeV
    > 2 MeV
    下载: 导出CSV
    Baidu
  • [1]

    赵华, 朱光武, 王世金, 高玉芬, 刘振兴 2003 中国科学D辑 33 89Google Scholar

    Zhao H, Zhu G W, Wang S J, Gao Y F, Liu Z X 2003 Sci. ChinaD 33 89Google Scholar

    [2]

    黄建国, 韩建伟 2010 59 2907Google Scholar

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907Google Scholar

    [3]

    宗秋刚, 袁憧憬, 王永福, 苏振鹏 2013 中国科学: 地球科学 43 951

    Zong Q G, Yuan C J, Wang Y F, Su Z P 2013 Sci. China: Earth Sci. 43 951

    [4]

    Friedel R H W, Reeves G, Belian D, Cayton T, Mouikis C, Korth A, Blake B, Fennel J, SelesnickR, Baker D, Onsagers T, Kaneka1 S 2000 Adv. Space Res. 26 93

    [5]

    Chen Y, Friedel R H W, Reeves G D, Onsager T G, Thomsen M F 2005 J. Geophy. Res. 110 A10210Google Scholar

    [6]

    Chen Y, Friedel R H W, Reeves G D, Cayton T E, Christensen R 2007 J. Geophys. Res. 112 A11214Google Scholar

    [7]

    Yang X C, Ni B B, Yu J, Zhang Y, Zhang X X, Sun Y Q 2017 J. Geophys. Res. 122 6255Google Scholar

    [8]

    Friedel R H W, Bourdarie S, Cayton T E 2005 Space Weather 3 S09B04

    [9]

    Meredith Nigel P, Horne Richard B, Isles John D 2015 Space Weather 13 170

    [10]

    Ganushkina N Yu, Sillanpää I, Welling D 2019 Space Weather 17 687Google Scholar

    [11]

    王馨悦, 王春琴, 杨晓超, 王世金 2008 地球 55 611Google Scholar

    Wang X Y, Wang C Q, Yang X C, Wang S J 2008 Chin. J. Geophys. 55 611Google Scholar

    [12]

    于超, 李嘉巍, 张效信, 李传起, 王春琴, 王世金 2012 地球 55 2835Google Scholar

    Yu C, Li J W, Zhang X X, Li C Q, Wang C Q, Wang S J 2012 Chin. J. Geophys. 55 2835Google Scholar

    [13]

    Li X L, Temerin M A 2001 Space Sci. Rev. 95 569Google Scholar

    [14]

    徐荣栏, 李磊 2005 磁层粒子动力学 (北京: 科学出版社) 第84—92页

    Xu R L, Li L 2005 Magnetosphereic Partical Dynamics (Beijing: Science Press) pp84–92 (in Chinese)

    [15]

    涂传治 1988 日地空间物理学: 行星际与磁层(下册) (北京: 科学出版社) 第111—118页

    Tu C Z 1988 Solar-Terrestrial Space Physics: Interplanetary and Magnetosphere (Vol.2) (Beijing: Science Press) pp111–118 (in Chinese)

    [16]

    McCollough J P, Gannon J L, Baker D N, Gehmeyr M 2008 Space Weather 6 S10001

    [17]

    Yang X C, Zhu G W, Zhang X X, Sun Y Q, Liang J B, Wei X H 2014 J. Geophys. Res. Space Phys. 119 9038

  • [1] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质.  , 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [2] 董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和. 在超强磁场中修正的相对论电子压强.  , 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [3] 李靖, 刘运全. 基于相对论自由电子的量子物理.  , 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [4] 熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人. 长短脉冲联合驱动双层结构靶优化伽马射线的产生.  , 2022, 71(21): 215201. doi: 10.7498/aps.71.20212042
    [5] 王淦平, 金晓, 黄华, 刘振帮. 强流相对论多注电子束在空心圆柱波导中的漂移.  , 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [6] 成会, 谢鸿全, 刘迎辉, 李正红, 吴洋. S波段四腔强流相对论速调管的设计和实验研究.  , 2014, 63(1): 018402. doi: 10.7498/aps.63.018402
    [7] 王兆军, 吕国梁, 朱春花, 霍文生. 相对论简并电子气体的磁化.  , 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [8] 苏东, 唐昌建. 相对论电子束在动态加载等离子体中的自聚焦传输.  , 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [9] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [10] 丛 蕊, 刘树林, 马 锐. 基于数据融合的多变量相空间重构方法.  , 2008, 57(12): 7487-7493. doi: 10.7498/aps.57.7487
    [11] 刘 炯, 袁业飞, 邓小龙. 等离子体中相对论电子的同步曲率辐射特性研究.  , 2007, 56(2): 1214-1223. doi: 10.7498/aps.56.1214
    [12] 晋兴雨, 邱锡钧, 朱志远. 在相对论性激光-等离子体系统中初始物理参数对激光脉冲的影响.  , 2006, 55(10): 5338-5343. doi: 10.7498/aps.55.5338
    [13] 吴亚波, 邓雪梅, 赵国明, 李 松, 吕剑波, 杨秀一. Clifford代数中的双曲相位变换群及其在四维相对论时空中的应用.  , 2005, 54(11): 4994-4998. doi: 10.7498/aps.54.4994
    [14] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态.  , 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [15] 方建会. 变质量物体的相对论四维协变方程.  , 1999, 48(8): 1389-1393. doi: 10.7498/aps.48.1389
    [16] 屈一至, 仝晓民, 李家明. 电子与原子、离子碰撞过程的相对论效应.  , 1995, 44(11): 1719-1726. doi: 10.7498/aps.44.1719
    [17] 田人和. 相对论性带电粒子束在轴对称电场和磁场中的温度和能量展宽.  , 1993, 42(5): 750-756. doi: 10.7498/aps.42.750
    [18] 石秉仁. 相对论性电子束的类Tokamak平衡.  , 1983, 32(4): 507-514. doi: 10.7498/aps.32.507
    [19] 张元仲. 在地球引力场中进行广义相对论第四类实验的可能性.  , 1982, 31(10): 1440-1442. doi: 10.7498/aps.31.1440
    [20] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象.  , 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
计量
  • 文章访问数:  6457
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-05-27
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回
Baidu
map