搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子碰撞Au靶产生L系特征X射线角分布

柳钰 徐忠锋 王兴 胡鹏飞 张小安

引用本文:
Citation:

光子碰撞Au靶产生L系特征X射线角分布

柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安

Angular distribution of L characteristic X-ray emission from Au target impacted by photons

Liu Yu, Xu Zhong-Feng, Wang Xing, Hu Peng-Fei, Zhang Xiao-An
PDF
HTML
导出引用
  • 采用中心能量为13.1 keV (最大能量小于30 keV)的轫致辐射光子碰撞Au靶, 在130°—170°的探测角度范围内以10°为间隔, 测量了碰撞产生的特征X射线Lι, Lα, Lβ和Lγ1的光谱. 根据实验测得的能谱结果, 综合考虑探测器的探测效率及靶材的吸收校准后, 计算了不同探测角度下特征X射线Lα与Lγ1及Lι与Lγ1的相对强度比; 而且, 还基于不同探测角度下X射线强度比值, 分析了特征X射线的角分布情况. 实验结果表明特征X射线Lα和Lι为各向异性发射. 此外, 计算了特征X射线Lι的各向异性参数为0.25, 并据此推断出L3支壳层的定向度A20为0.577 ± 0.081; 分析认为L3支壳层的定向度A20由该支壳层本身的物理特性决定, 但该支壳层的各向异性参数β会受到Coster-Kronig跃迁的影响而发生改变.
    The vacancy can be produced through impact ionization of target atom by energetic particles. It is of significant importance to study the vacancy state by the measurement of angular distribution of typical X-rays. At present, accurate ionization cross-section data of the atomic inner shell are urgently required in many areas. However, the precise measurement of ionization cross-section of the atomic inner shell is largely dependent on the fact that whether the characteristic radiation (e.g., X-ray) is isotropic. In this experiment, the characteristic Lι, Lα, Lβ and Lγ1 X-rays for Au target are measured by a silicon drift detector in an emission angle range from 130° to 170° in steps of 10°. A mini-X ray source is utilized to produce bremsstrahlung with the center energy of 13.1 keV.Considering detection efficiency of the detector and the absorption of the target, relative intensity ratios, I(Lα)/I(Lγ1) and I(Lι)/I(Lγ1), are obtained at different detection angles based on the experimental energy spectrum results. Moreover, the angular dependence of X-ray intensity ratio is investigated and it is found that the X-rays Lι and Lα exhibit anisotropic emission.According to the X-ray intensity ratio I(Lι)/I(Lγ1) and the P2(cosθ), and using the least square method, the anisotropic parameter β of characteristic X-ray Lι is derived to be 0.25. Due to the relation β = ακA20, the value of the alignment degree A20 for L3 sub-shell is determined to be 0.577 ± 0.08. Alignment degree A20 for L3 sub-shell is dependent on its intrinsic physical properties, while the anisotropy parameter β of typical X-rays can be affected by Coster-Kronig transition process.The behavior of the alignment for inner-shell vacancy states calls for more research results both in theory and in experiment. Therefore, it is quite relevant and meaningful to perform more experiments to further study the angular distribution of vacancy states by electrons, photons and ions impacting a target.
      通信作者: 柳钰, liuyuxianyang0625@126.com
    • 基金项目: 国家级-电子与分子吸附解离过程中氢-氘同位素效应研究(11875219)
      Corresponding author: Liu Yu, liuyuxianyang0625@126.com
    [1]

    杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰 2018 67 027301Google Scholar

    Yang M S, Yi T M, Zheng F C, Tang Y J, Zhang L, Du K, Li N, Zhao L P, Ke B, Xing P F 2018 Acta Phys. Sin. 67 027301Google Scholar

    [2]

    曾雄辉, 赵广军, 徐军 2004 53 1935Google Scholar

    Zeng X H, Zhao G J, Xu J 2004 Acta Phys. Sin. 53 1935Google Scholar

    [3]

    Nishimura F, Kim J, Yonezawa S, Takashima M 2014 J. Flu. Chem. 160 52Google Scholar

    [4]

    戚俊成, 刘宾, 陈荣昌, 夏正德, 肖体乔 2019 68 024202Google Scholar

    Qi J C, Liu B, Chen R C, Xia Z D, Xiao T Q 2019 Acta Phys. Sin. 68 024202Google Scholar

    [5]

    王琛, 安红海, 方智恒, 熊俊, 王伟, 孙今人 2018 67 015203Google Scholar

    Wang C, An H H, Fang Z H, Xiong J, Wang W, Sun J R 2018 Acta Phys. Sin. 67 015203Google Scholar

    [6]

    张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋 2017 66 245201Google Scholar

    Zhang T K, Yu M H, Dong K G, Wu Y C, Yang J, Chen J, Lu F, Li G, Zhu B, Tan F, Wang S Y, Yan Y H, Gu Y Q 2017 Acta Phys. Sin. 66 245201Google Scholar

    [7]

    Flügge S, Mehlhorn M, Schmidt V 1972 Phys. Rev. Lett. 29 7Google Scholar

    [8]

    Berezhko E G, Kabachnik N M, Rostovsky V S 1978 J. Phys. B: At. Mol. Phys. 11 1749Google Scholar

    [9]

    Raza H S, Kim H J, Ha J M, Cho S O 2013 Appl. Radiat. Isot. 80 67Google Scholar

    [10]

    Bansal H, Kaur G, Tiwari M K, Mittal R 2016 Eur. Phys. J. D 70 84Google Scholar

    [11]

    Salem S, Stöhlker T, Brauning-Demian A, Hagmann S, Kozhuharov C, Liesen D 2013 Phys. Rev. A 88 012701Google Scholar

    [12]

    Özdemir Y, Durak R, Kacal M R, Kurudirek M 2011 Appl. Radiat. Isot. 69 991Google Scholar

    [13]

    Han I, Demir L 2011 J. X-Ray Sci. Technol. 19 13Google Scholar

    [14]

    Demir L, Şahin M, Söğűt Ö, Şahin Y 2000 Radiat. Phys. Chem. 59 355Google Scholar

    [15]

    Cooper J, Zare N 1969 Atomic Collision Processes (New York: Gordon & Breach) pp317−337

    [16]

    Kumar A, Agnihotri A N, Chatterjee S, Kasthurirangan S, Misra D, Choudhury R K, Sarkadi L, Tribedi L C 2010 Phys. Rev. A 81 062709Google Scholar

    [17]

    Alrakabi M, Kumar S, Sharma V, Singh G, Mehta D 2013 Eur. Phys. J. D 67 99Google Scholar

    [18]

    Tartari A, Baraldi C, Casnati E, Da Re A, Jorge E F, Taioli S 2003 J. Phys. B 36 843Google Scholar

    [19]

    Kumar A, Puri S, MehtaD, Garg M L, Singh N 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3701Google Scholar

    [20]

    Kumar A, Puri S, Shahi J S, Garg M L, Mehta D, Singh N 2001 J. Phys. B: At. Mol. Opt. Phys. 34 613Google Scholar

    [21]

    Gonzales D, Requena S, Williams S 2012 Appl. Radiat. Isot. 70 301Google Scholar

    [22]

    Berezhko E G, Kabachnik N M 1977 J. Phys. B: At. Mol. Opt. Phys. 10 2467Google Scholar

    [23]

    Yalçın P, Porikli S, Kurucu Y, Şahin Y 2008 Phys. Lett. B 663 186Google Scholar

    [24]

    Storm L, Israel H I 1970 At. Data Nucl. Data Tables 7 565Google Scholar

    [25]

    Bambynek W, Crasemann B, Fink R W, Freund H U, Mark H, Swift C D, Price R E, Rao P V 1972 Rev. Mod. Phys. 44 716Google Scholar

    [26]

    Scofield J H 1973 Theoretical Photoionization Cross-sections from 1 to 1500 keV (Livermore, CA: Lawrence Livermore Laboratory) Report No. UCRL-51326

  • 图 1  实验装置示意图

    Fig. 1.  Experimental setup.

    图 2  探测角度为140°时、中心能量为13.1 keV轫致辐射入射Au靶产生L系特征X射线能谱图

    Fig. 2.  Fitted L X-ray spectrum of Au induced by impact with bremsstrahlung with central energy of 13.1 keV and measured at the emission angle of 140°.

    图 3  Au 靶特征X射线强度比I(Lα)/I(Lγ1)和I(Lι)/I(Lγ1)与P2(cosθ)的关系

    Fig. 3.  Intensity ratios of I(Lα)/I(Lγ1) and I(Lι)/I(Lγ1) as a function of P2(cosθ) for Au.

    表 1  Au元素的L支壳层CK跃迁概率fij数据[25]

    Table 1.  L-subshell CK yields fij for Au[25].

    f12f13f23
    0.0830.6440.132
    下载: 导出CSV

    表 2  不同入射能量下L支壳层电离截面[26]及CK跃迁矫正因子κ

    Table 2.  Ionization cross-sections (in barn) for L subshells[26] and CK correction factor κ at different energies.

    E/keVσL1σL2σL3κ
    1.90000
    12003.5629 × 1041
    13.76002.4493 × 1041
    13.801.5567 × 1042.3987 × 1040.92
    14.301.4574 × 1042.2035 × 1040.91
    14.47.8361 × 1031.4237 × 1032.1575 × 1040.80
    157.4098 × 1031.2777 × 1041.9496 × 1040.75
    204.4219 × 1036.1227 × 1038.5173 × 1030.7
    301.993 × 1031.9923 × 1032.5531 × 1030.62
    下载: 导出CSV
    Baidu
  • [1]

    杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰 2018 67 027301Google Scholar

    Yang M S, Yi T M, Zheng F C, Tang Y J, Zhang L, Du K, Li N, Zhao L P, Ke B, Xing P F 2018 Acta Phys. Sin. 67 027301Google Scholar

    [2]

    曾雄辉, 赵广军, 徐军 2004 53 1935Google Scholar

    Zeng X H, Zhao G J, Xu J 2004 Acta Phys. Sin. 53 1935Google Scholar

    [3]

    Nishimura F, Kim J, Yonezawa S, Takashima M 2014 J. Flu. Chem. 160 52Google Scholar

    [4]

    戚俊成, 刘宾, 陈荣昌, 夏正德, 肖体乔 2019 68 024202Google Scholar

    Qi J C, Liu B, Chen R C, Xia Z D, Xiao T Q 2019 Acta Phys. Sin. 68 024202Google Scholar

    [5]

    王琛, 安红海, 方智恒, 熊俊, 王伟, 孙今人 2018 67 015203Google Scholar

    Wang C, An H H, Fang Z H, Xiong J, Wang W, Sun J R 2018 Acta Phys. Sin. 67 015203Google Scholar

    [6]

    张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋 2017 66 245201Google Scholar

    Zhang T K, Yu M H, Dong K G, Wu Y C, Yang J, Chen J, Lu F, Li G, Zhu B, Tan F, Wang S Y, Yan Y H, Gu Y Q 2017 Acta Phys. Sin. 66 245201Google Scholar

    [7]

    Flügge S, Mehlhorn M, Schmidt V 1972 Phys. Rev. Lett. 29 7Google Scholar

    [8]

    Berezhko E G, Kabachnik N M, Rostovsky V S 1978 J. Phys. B: At. Mol. Phys. 11 1749Google Scholar

    [9]

    Raza H S, Kim H J, Ha J M, Cho S O 2013 Appl. Radiat. Isot. 80 67Google Scholar

    [10]

    Bansal H, Kaur G, Tiwari M K, Mittal R 2016 Eur. Phys. J. D 70 84Google Scholar

    [11]

    Salem S, Stöhlker T, Brauning-Demian A, Hagmann S, Kozhuharov C, Liesen D 2013 Phys. Rev. A 88 012701Google Scholar

    [12]

    Özdemir Y, Durak R, Kacal M R, Kurudirek M 2011 Appl. Radiat. Isot. 69 991Google Scholar

    [13]

    Han I, Demir L 2011 J. X-Ray Sci. Technol. 19 13Google Scholar

    [14]

    Demir L, Şahin M, Söğűt Ö, Şahin Y 2000 Radiat. Phys. Chem. 59 355Google Scholar

    [15]

    Cooper J, Zare N 1969 Atomic Collision Processes (New York: Gordon & Breach) pp317−337

    [16]

    Kumar A, Agnihotri A N, Chatterjee S, Kasthurirangan S, Misra D, Choudhury R K, Sarkadi L, Tribedi L C 2010 Phys. Rev. A 81 062709Google Scholar

    [17]

    Alrakabi M, Kumar S, Sharma V, Singh G, Mehta D 2013 Eur. Phys. J. D 67 99Google Scholar

    [18]

    Tartari A, Baraldi C, Casnati E, Da Re A, Jorge E F, Taioli S 2003 J. Phys. B 36 843Google Scholar

    [19]

    Kumar A, Puri S, MehtaD, Garg M L, Singh N 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3701Google Scholar

    [20]

    Kumar A, Puri S, Shahi J S, Garg M L, Mehta D, Singh N 2001 J. Phys. B: At. Mol. Opt. Phys. 34 613Google Scholar

    [21]

    Gonzales D, Requena S, Williams S 2012 Appl. Radiat. Isot. 70 301Google Scholar

    [22]

    Berezhko E G, Kabachnik N M 1977 J. Phys. B: At. Mol. Opt. Phys. 10 2467Google Scholar

    [23]

    Yalçın P, Porikli S, Kurucu Y, Şahin Y 2008 Phys. Lett. B 663 186Google Scholar

    [24]

    Storm L, Israel H I 1970 At. Data Nucl. Data Tables 7 565Google Scholar

    [25]

    Bambynek W, Crasemann B, Fink R W, Freund H U, Mark H, Swift C D, Price R E, Rao P V 1972 Rev. Mod. Phys. 44 716Google Scholar

    [26]

    Scofield J H 1973 Theoretical Photoionization Cross-sections from 1 to 1500 keV (Livermore, CA: Lawrence Livermore Laboratory) Report No. UCRL-51326

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [3] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面.  , 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [4] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [5] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [6] 李琼, 沈礼, 闫俊刚, 戴长建, 杨玉娜. Eu原子4f76p1/2ns自电离过程的动力学特性.  , 2016, 65(15): 153202. doi: 10.7498/aps.65.153202
    [7] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布.  , 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [8] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算.  , 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [9] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离.  , 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [10] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究.  , 2013, 62(5): 053602. doi: 10.7498/aps.62.053602
    [11] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [12] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [13] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究.  , 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [14] 余志强, 谢泉, 肖清泉, 赵珂杰. 基于Bohr-Sommerfeld量子理论的X射线光谱分析.  , 2009, 58(8): 5318-5322. doi: 10.7498/aps.58.5318
    [15] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究.  , 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [19] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数.  , 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [20] 张穗萌, 吴兴举. H原子(e,2e)反应中电子角分布的理论研究.  , 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
计量
  • 文章访问数:  7494
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-04-09
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map