搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷分子离子HD+振转光谱的精密测量

张乾煜 白文丽 敖致远 丁彦皓 彭文翠 何胜国 童昕

引用本文:
Citation:

基于冷分子离子HD+振转光谱的精密测量

张乾煜, 白文丽, 敖致远, 丁彦皓, 彭文翠, 何胜国, 童昕

Precision measurement based on rovibrational spectrum of cold molecular hydrogen ion

Zhang Qian-Yu, Bai Wen-Li, Ao Zhi-Yuan, Ding Yan-Hao, Peng Wen-Cui, He Sheng-Guo, Tong Xin
cstr: 32037.14.aps.73.20241064
PDF
HTML
导出引用
  • 由一个质子、一个氘核和一个电子组成的氢分子离子“HD+”是最简单的异核双原子分子, 其有着丰富的、可精确计算和测量的振转跃迁谱线. 通过HD+振转光谱实验测量和理论计算的对比, 可实现物理常数的精确确定, 量子电动力学理论的检验, 并开启了超越标准模型新物理的探寻. 目前, HD+的振转跃迁频率确定的相对精度已经进入了10–12量级, 并由此获得了当前最高精度的质子电子质量比, 相对精度达到20 ppt (1 ppt = 10–12). 本文全面介绍了目前HD+振转光谱的研究现状与理论背景, 阐述了基于Be+离子协同冷却HD+分子离子的高精度振转光谱测量方法, 包括Be+离子和HD+分子离子的产生与囚禁, HD+外态冷却与内态制备, 双组分库仑晶体中HD+数目的确定, 以及HD+振转跃迁的探测. 最后, 文章展望了进一步提高频率测量精度的光谱前沿技术, 及同位素氢分子离子的振转光谱在未来研究中的发展前景.
    A molecular hydrogen ion HD+, composed of a proton, a deuteron, and an electron, has a rich set of rovibrational transitions that can be theoretically calculated and experimentally measured precisely. Currently, the relative accuracy of the rovibrational transition frequencies of the HD+ molecular ions has reached 10–12. By comparing experimental measurements with theoretical calculations of the HD+ rovibrational spectrum, the precise determination of the proton-electron mass ratio, the testing of quantum electrodynamics(QED) theory, and the exploration of new physics beyond the standard model can be achieved. The experiment on HD+ rovibrational spectrum has achieved the highest accuracy (20 ppt, 1 ppt = 10–12) in measuring proton-electron mass ratio. This ppaper comprehensively introduces the research status of HD+ rovibrational spectroscopy, and details the experimental method of the high-precision rovibrational spectroscopic measurement based on the sympathetic cooling of HD+ ions by laser-cooled Be+ ions. In Section 2, the technologies of generating and trapping both Be+ ions and HD+ ions are introduced. Three methods of generating ions, including electron impact, laser ablation and photoionization, are also compared. In Section 3, we show the successful control of the kinetic energy of HD+ molecular ions through the sympathetic cooling, and the importance of laser frequency stabilization for sympathetic cooling of HD+ molecular ions. In Section 4, two methods of preparing internal states of HD+ molecular ions, optical pumping and resonance enhanced threshold photoionization, are introduced. Both methods show the significant increase of population in the ground rovibrational state. In Section 5, we introduce two methods of determining the change in the number of HD+ molecular ions, i.e. secular excitation and molecular dynamic simulation. Both methods combined with resonance enhanced multiphoton dissociation can detect the rovibrational transitions of HD+ molecular ions. In Section 6, the experimental setup and process for the rovibrational spectrum of HD+ molecular ions are given and the up-to-date results are shown. Finally, this paper summarizes the techniques used in HD+ rovibrational spectroscopic measurements, and presents the prospects of potential spectroscopic technologies for further improving frequency measurement precision and developing the spectroscopic methods of different isotopic hydrogen molecular ions.
      通信作者: 彭文翠, wencuipeng@wipm.ac.cn ; 何胜国, hesg@wipm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1402103)和国家自然科学基金(批准号: 12393825)资助的课题.
      Corresponding author: Peng Wen-Cui, wencuipeng@wipm.ac.cn ; He Sheng-Guo, hesg@wipm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1402103) and the National Natural Science Foundation of China (Grant No. 12393825).
    [1]

    Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501Google Scholar

    [2]

    Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155Google Scholar

    [3]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806Google Scholar

    [4]

    Korobov V I 2022 Phys. Part. Nuclei 53 1Google Scholar

    [5]

    Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055Google Scholar

    [6]

    Ye N, Yan Z C 2014 Phys. Rev. A 90 032516Google Scholar

    [7]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501Google Scholar

    [8]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001Google Scholar

    [9]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815Google Scholar

    [10]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502Google Scholar

    [11]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502Google Scholar

    [12]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804Google Scholar

    [13]

    Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [14]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002Google Scholar

    [15]

    Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 183003Google Scholar

    [16]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555Google Scholar

    [17]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152Google Scholar

    [18]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569Google Scholar

    [19]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263Google Scholar

    [20]

    Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385Google Scholar

    [21]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238Google Scholar

    [22]

    Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467Google Scholar

    [23]

    Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518Google Scholar

    [24]

    Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610Google Scholar

    [25]

    Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807Google Scholar

    [26]

    Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028Google Scholar

    [27]

    Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201Google Scholar

    [28]

    Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128Google Scholar

    [29]

    Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403Google Scholar

    [30]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201Google Scholar

    [31]

    Benda J, Mašín Z 2021 Sci. Rep. 11 11686Google Scholar

    [32]

    Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108Google Scholar

    [33]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002Google Scholar

    [34]

    Wahnschaffe M 2016 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University

    [35]

    Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chin. J. Phys. 84 164Google Scholar

    [36]

    Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712Google Scholar

    [37]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [38]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002Google Scholar

    [39]

    Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220Google Scholar

    [40]

    Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599Google Scholar

    [41]

    Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073Google Scholar

    [42]

    Wu Q M, Filzinger M, Shi Y, Wang Z H, Zhang J H 2021 Rev. Sci. Instrum. 92 063201Google Scholar

    [43]

    Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402Google Scholar

    [44]

    Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205Google Scholar

    [45]

    Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107Google Scholar

    [46]

    Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75Google Scholar

    [47]

    Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30Google Scholar

    [48]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101Google Scholar

    [49]

    Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733Google Scholar

    [50]

    Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932Google Scholar

    [51]

    Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004Google Scholar

    [52]

    Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106Google Scholar

    [53]

    Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70Google Scholar

    [54]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514Google Scholar

    [55]

    Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099Google Scholar

    [56]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402Google Scholar

    [57]

    Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 3813 2370Google Scholar

    [58]

    King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214Google Scholar

    [59]

    Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201Google Scholar

    [60]

    Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27Google Scholar

    [61]

    Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17Google Scholar

    [62]

    Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000Google Scholar

    [63]

    Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741Google Scholar

    [64]

    Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506Google Scholar

    [65]

    Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992Google Scholar

    [66]

    Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001Google Scholar

    [67]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97Google Scholar

    [68]

    Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chin. J. Phys. 89 1500Google Scholar

    [69]

    Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119Google Scholar

    [70]

    Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27–30, 2013 pp250–256

    [71]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004Google Scholar

    [72]

    Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, France, Jul. 23–30, 2020

    [73]

    Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706Google Scholar

    [74]

    Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053Google Scholar

    [75]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001Google Scholar

    [76]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783Google Scholar

    [77]

    Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275Google Scholar

    [78]

    Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103Google Scholar

    [79]

    Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys. 25 13933Google Scholar

    [80]

    Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295Google Scholar

    [81]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1Google Scholar

    [82]

    Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009Google Scholar

    [83]

    Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820Google Scholar

    [84]

    Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421Google Scholar

    [85]

    Karr J P 2014 J. Mol. Spectrosc. 300 37Google Scholar

    [86]

    Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004Google Scholar

    [87]

    Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413Google Scholar

    [88]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [89]

    Myers E G 2018 Phys. Rev. A 98 010101Google Scholar

    [90]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001Google Scholar

    [91]

    Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805Google Scholar

    [92]

    Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383Google Scholar

    [93]

    Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709Google Scholar

  • 图 1  质子电子质量比常数测量

    Fig. 1.  The measurements of proton-electron mass ratio.

    图 2  H2分子、HD+分子离子、反质子氦光谱实验确定强子与强子相互作用的第五种力的上限[26]

    Fig. 2.  Spectroscopic measurement of H2 molecule, HD+ molecular ion, and antiprotonic helium constrains on the fifth force of hadron-hadron interaction[26].

    图 3  激光溅射影响下的离子阱电压变化

    Fig. 3.  The change of voltage on the ion trap under the influence of laser ablation.

    图 4  Be原子和HD分子光电离的相关能级 (a) Be原子光电离的相关能级, 黑色箭头表示双光子非共振电离, 紫色箭头表示[1+1]双光子共振电离, 蓝色箭头表示[2+1]三光子共振电离; (b) HD分子光电离的相关能级, 3个蓝色箭头组合表示[2+1]三光子共振电离, 两个蓝色箭头和一个红色箭头组合表示[2+1']三光子共振电离

    Fig. 4.  The related levels of Be atom and HD molecule photoionization: (a) The relevant energy levels for photoionization of the Be atom, black arrows indicate two-photon non-resonant ionization, purple arrows indicate [1+1] two-photon resonant ionization, and blue arrows indicate [2+1] three-photon resonant ionization; (b) the relevant energy levels for photoionization of the HD molecule, three blue arrows represent [2+1] three-photon resonant ionization, and combination of two blue arrows and a red arrow represent [2+1'] three-photon resonant ionization.

    图 5  双组分库仑晶体径向分离示意图, 该图视角为径向截面图, 其中M1为内层被协同冷却离子的质量, M2为外层冷却剂离子的质量, b2a2分别为质量为M2离子壳层的外径和内径, b1为内层离子的外径

    Fig. 5.  The schematic diagram of a bi-component Coulomb crystal in the view of a radial cross-section, where M1 is the mass of the sympathetically cooled ions in the inner shell, M2 is the mass of the laser-cooled ions in the outer shell, b2 and a2 are the radius of the outer and inner surface of the ions with the mass of M2, respectively, b1 is the radius of the outer surface of the ions with the mass of M1.

    图 6  Be+离子激光冷却相关能级

    Fig. 6.  Related energy levels of Be+ laser cooling.

    图 7  313 nm激光器稳频实验装置示意图[68]

    Fig. 7.  Schematic of the experimental setup for frequency stabilization of the 313 nm laser[68].

    图 8  将冷却激光的锁定在ULE腔(a)和波长计(b)上的Be+库仑晶体的图像[68], 图像时间点在激光频率锁定后的2, 40, 80, 120, 160, 200, 240 s

    Fig. 8.  The images of Be+ Coulomb crystals with cooling laser locked to ULE cavity (a) or wavelength meter (b)[68], the image time points are at 2, 40, 80, 120, 160, 200, 240 s after the laser frequency is locked.

    图 9  利用光泵浦方法后HD+振动基态的转动态分布[77], 红色、黑色、蓝色的数据点分别为为使用光泵浦方法后的实验采集的信号、模拟的信号、模拟的态布居数, 灰色数据点为没有使用光泵浦方法实验采集的信号

    Fig. 9.  Rotational-state distribution of the vibrational ground state after applying the optical pumping scheme[77], the red, black, and blue data points represent the experimental collected signals, simulated signals, and simulated population after using the optical pumping method, respectively, the gray data points represent the experimental collected signals without using the optical pumping method.

    图 10  不同201 nm激光能量下[2+1]和[2+1' ]两种REMPI过程产生的HD+离子信号[48]

    Fig. 10.  HD+ ion signals produced by two processes under the different power of 201 nm laser[48].

    图 11  宏运动激发装置示意图, 蓝色、红色小球分别为激光冷却的离子和宏运动激发加热的暗离子

    Fig. 11.  Schematic diagram of secular excitation, the blue and red balls represent coolant ions and dark ions heated by secular excitation, respectively.

    图 12  HD+分子离子宏运动激发扫频信号[48], 红线、蓝线分别为HD+分子离子解离前后的扫频信号

    Fig. 12.  The change of fluorescent signals when sweeping frequency of the secular excitation for HD+ molecular ions[48], the red and blue lines represent the fluorescent signals before and after the dissociation of HD+ molecular ions, respectively.

    图 13  通过分子动力学模拟确定离子阱内装载的HD+分子离子的数量[35], 比较实验与模拟图像的晶体结构, 其内部暗核的形状和尺寸与HD+离子的数量有关(红框内), 含有(15 ± 1)个HD+分子离子的模拟图像与实验图像最为符合

    Fig. 13.  Determination of the number of sympathetically cooled HD+ ions by molecular dynamics simulation[35], comparing the crystal structures in the experimental and simulated images, the shape and size of the internal dark core are related to the number of HD+ ions (within the red square), and the simulated image containing (15 ± 1) HD+ molecular ions is the most consistent with the experimental image.

    图 14  HD+分子离子共振增强多光子解离(REMPD)过程 (a)解离前后二维电子概率密度ρ的分布图, 其色度正比于lgρ; (b) REMPD过程的相关能级; (c)为转跃迁(v, L):(0, 0)→(6, 1)相关的超精细结构能级图, 其中的量子数F, S, J是电子自旋se、质子自旋Ip、氘核自旋Id和分子旋转N按耦合强弱通过以下耦合方案形成, J = S+L, 其中S = F+Id, F = se+Ip, 4种不同颜色带箭头的线表示符合ΔF = 0, ΔS = 0选择定则的超精细跃迁

    Fig. 14.  Resonance enhanced multiphoton dissociation (REMPD) process of HD+ molecular ions: (a) The distribution of electrons two-dimensional probability density ρ before and after dissociation, and its chromaticity is proportional to log10ρ; (b) the relevant energy levels of the REMPD process; (c) the relevant hyperfine structure levels of the rovibrational transition (v, L):(0, 0)→(6, 1), the quantum numbers refer to the following coupling scheme for the electron spin se, proton spin Ip, deuteron spin Id, and molecular rotation N: J = S+L, where S = F+Id, F = se+Ip. The four strongest hyperfine transitions for ΔF = 0 and ΔS = 0 are represented by four different colored arrows.

    图 15  HD+分子离子振转跃迁 (v, L):(0, 0)→(6, 1) 光谱实验装置示意图

    Fig. 15.  Schematic diagram of the experimental setup for the HD+ molecular ion rovibrational transition (v, L): (0, 0)→(6, 1) spectrum.

    图 16  HD+分子离子振转跃迁 (v, L):(0, 0)→(6, 1) 光谱, 数据点为8次测量的平均值, 垂直误差棒为8次测量的标准差

    Fig. 16.  Spectrum of the (v, N): (0, 0) → (6, 1) HD+ molecular ion rovibrational transition, data points are the average of 8 measurements, and vertical error bars represent the standard deviations.

    表 1  基本物理常数对HD+分子离子振转跃迁频率不确定度的影响[1]

    Table 1.  Influences of fundamental physical constants on the uncertainty of the vibrational transition frequencies of HD+ molecular ions[1].

    R μpe μde rp rd α
    当前物理量的相对不确定度 1.9 ppt 60 ppt 35 ppt 0.002 350 ppm 0.15 ppb
    频率值对物理量的敏感系数 ~1 ~0.1 ~0.01 ~10–9 ~10–9 ~10–6
    物理量对频率相对不确定度影响 ~1 ppt ~10 ppt ~1 ppt ~1 ppt ~0.1 ppt ~0.1 ppq
    注: 表中ppm(part per million), ppb(part per billion), ppt(part per trillion), ppq(part per quadrillion)分别表示10–6, 10–9, 10–12, 10–15.
    下载: 导出CSV

    表 2  QED理论计算的HD+振转跃迁 (v, L):(0, 0)→(6, 1)各项贡献

    Table 2.  Contribution of QED theory calculation of HD+ rovibrational transition (v, L):(0, 0)→(6, 1).

    频率/MHz 贡献项
    vnr 303393178.0114(8) 三体非相对论薛定谔方程能量
    vnuc –0.096(1) 有限核效应
    vα2 4571.102 59(3) Breit–Pauli近似中的相对论修正
    vα3 –1 234.8136(3) 辐射修正领头项
    vα4 –8.9607(3) 1圈、2圈辐射修正; 高阶的相对论修正
    vα5 0.537(1) 3圈的辐射修正; Wichmann–Kroll贡献项
    vα6 0.003(5) 高阶的辐射修正
    vtot 303303396505.784(5)
    下载: 导出CSV
    Baidu
  • [1]

    Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501Google Scholar

    [2]

    Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155Google Scholar

    [3]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806Google Scholar

    [4]

    Korobov V I 2022 Phys. Part. Nuclei 53 1Google Scholar

    [5]

    Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055Google Scholar

    [6]

    Ye N, Yan Z C 2014 Phys. Rev. A 90 032516Google Scholar

    [7]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501Google Scholar

    [8]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001Google Scholar

    [9]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815Google Scholar

    [10]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502Google Scholar

    [11]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502Google Scholar

    [12]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804Google Scholar

    [13]

    Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [14]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002Google Scholar

    [15]

    Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 183003Google Scholar

    [16]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555Google Scholar

    [17]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152Google Scholar

    [18]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569Google Scholar

    [19]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263Google Scholar

    [20]

    Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385Google Scholar

    [21]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238Google Scholar

    [22]

    Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467Google Scholar

    [23]

    Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518Google Scholar

    [24]

    Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610Google Scholar

    [25]

    Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807Google Scholar

    [26]

    Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028Google Scholar

    [27]

    Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201Google Scholar

    [28]

    Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128Google Scholar

    [29]

    Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403Google Scholar

    [30]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201Google Scholar

    [31]

    Benda J, Mašín Z 2021 Sci. Rep. 11 11686Google Scholar

    [32]

    Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108Google Scholar

    [33]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002Google Scholar

    [34]

    Wahnschaffe M 2016 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University

    [35]

    Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chin. J. Phys. 84 164Google Scholar

    [36]

    Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712Google Scholar

    [37]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [38]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002Google Scholar

    [39]

    Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220Google Scholar

    [40]

    Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599Google Scholar

    [41]

    Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073Google Scholar

    [42]

    Wu Q M, Filzinger M, Shi Y, Wang Z H, Zhang J H 2021 Rev. Sci. Instrum. 92 063201Google Scholar

    [43]

    Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402Google Scholar

    [44]

    Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205Google Scholar

    [45]

    Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107Google Scholar

    [46]

    Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75Google Scholar

    [47]

    Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30Google Scholar

    [48]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101Google Scholar

    [49]

    Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733Google Scholar

    [50]

    Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932Google Scholar

    [51]

    Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004Google Scholar

    [52]

    Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106Google Scholar

    [53]

    Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70Google Scholar

    [54]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514Google Scholar

    [55]

    Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099Google Scholar

    [56]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402Google Scholar

    [57]

    Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 3813 2370Google Scholar

    [58]

    King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214Google Scholar

    [59]

    Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201Google Scholar

    [60]

    Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27Google Scholar

    [61]

    Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17Google Scholar

    [62]

    Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000Google Scholar

    [63]

    Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741Google Scholar

    [64]

    Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506Google Scholar

    [65]

    Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992Google Scholar

    [66]

    Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001Google Scholar

    [67]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97Google Scholar

    [68]

    Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chin. J. Phys. 89 1500Google Scholar

    [69]

    Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119Google Scholar

    [70]

    Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27–30, 2013 pp250–256

    [71]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004Google Scholar

    [72]

    Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, France, Jul. 23–30, 2020

    [73]

    Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706Google Scholar

    [74]

    Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053Google Scholar

    [75]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001Google Scholar

    [76]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783Google Scholar

    [77]

    Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275Google Scholar

    [78]

    Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103Google Scholar

    [79]

    Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys. 25 13933Google Scholar

    [80]

    Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295Google Scholar

    [81]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1Google Scholar

    [82]

    Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009Google Scholar

    [83]

    Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820Google Scholar

    [84]

    Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421Google Scholar

    [85]

    Karr J P 2014 J. Mol. Spectrosc. 300 37Google Scholar

    [86]

    Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004Google Scholar

    [87]

    Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413Google Scholar

    [88]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [89]

    Myers E G 2018 Phys. Rev. A 98 010101Google Scholar

    [90]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001Google Scholar

    [91]

    Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805Google Scholar

    [92]

    Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383Google Scholar

    [93]

    Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709Google Scholar

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量.  , 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容.  , 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [3] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构.  , 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [4] 王巧霞, 王玉敏, 马日, 闫冰. 7Li2(0, ±1)分子体系基态振-转能级的全电子计算.  , 2019, 68(11): 113102. doi: 10.7498/aps.68.20190359
    [5] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特.  , 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [6] 徐慧颖, 刘勇, 李仲缘, 杨玉军, 闫冰. CO分子四个电子态的振转谱:两种效应修正方法的比较.  , 2018, 67(21): 213301. doi: 10.7498/aps.67.20181469
    [7] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究.  , 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] 汪丽蓉, 冯薪林, 马杰, 赵延霆, 肖连团, 贾锁堂. 超冷铯分子0g-长程态的振转光谱研究.  , 2013, 62(18): 183301. doi: 10.7498/aps.62.183301
    [10] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移.  , 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [11] 沈光先, 汪荣凯, 令狐荣锋, 周勋, 杨向东. He-HD (HT, DT) 非对称碰撞体系振转势能面及微分散射截面的理论计算.  , 2012, 61(21): 213101. doi: 10.7498/aps.61.213101
    [12] 杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂. 超冷铷铯极性分子振转光谱的实验研究.  , 2012, 61(21): 213301. doi: 10.7498/aps.61.213301
    [13] 王晓璐, 徐梅, 令狐荣锋, 孙克斌, 杨向东. 氦同位素与氢分子碰撞的振转激发分波截面研究.  , 2010, 59(3): 1689-1694. doi: 10.7498/aps.59.1689
    [14] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究.  , 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [15] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比.  , 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [16] 樊群超, 孙卫国, 渠双双. 用代数方法精确研究HF分子B1Σ的振转能谱.  , 2008, 57(7): 4110-4118. doi: 10.7498/aps.57.4110
    [17] 龚天林, 杨晓华, 李红兵, 韩良恺, 陈扬骎. 分子离子光谱强度与母体分子气体压强的关系.  , 2004, 53(2): 418-422. doi: 10.7498/aps.53.418
    [18] 杨晓华, 陈扬骎, 蔡佩佩, 卢晶晶, 王荣军. 差分速度调制分子离子激光光谱技术.  , 1999, 48(5): 834-839. doi: 10.7498/aps.48.834
    [19] 王效刚, 朱清时. 用局域模型研究分子局域模振动态的振转光谱.  , 1997, 46(10): 1906-1916. doi: 10.7498/aps.46.1906
    [20] 方子韦, 林成鲁, 邹世昌. 磷分子离子(P2+)注入硅的损伤行为.  , 1988, 37(9): 1425-1431. doi: 10.7498/aps.37.1425
计量
  • 文章访问数:  932
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-18
  • 上网日期:  2024-09-23
  • 刊出日期:  2024-10-20

/

返回文章
返回
Baidu
map