-
强关联电子体系具有多序参量耦合且极易受到外场高效调控的特性. 钴氧化物(LaCoO3)是一类典型的多铁性(兼具铁弹性和铁磁性)氧化物材料, 受到了研究者们广泛和深入的研究. 过去, 针对钴氧化物的研究都集中于应力作用下的铁弹性相变和结构调控方面. 近年来, 研究人员新奇地发现钴氧化物薄膜在张应力作用下发生顺磁到铁磁相转变, 但其根源一直存在较大争议. 部分实验证据表明应力将会导致钴离子价态降低产生自旋态转变, 而另一些研究者认为应力诱导的纳米畴结构会呈现高自旋态的长程有序排列, 才是钴氧化物薄膜铁磁性的主要原因. 本综述主要介绍近几年来钴氧化物薄膜和异质结中自旋与晶格之间关联耦合效应的系列进展. 在保持钴离子价态不变时, 通过薄膜厚度、晶格失配应力、晶体对称性、表面形貌、界面氧离子配位和氧八面体倾转等结构因素诱导钴氧化物薄膜的自旋态可逆转变, 从而形成高度可调的宏观磁性. 进而, 研究者们利用原子级精度可控的薄膜生长技术构筑了单原胞层钴氧化物超晶格, 通过高效的结构调控, 实现了超薄二维磁性氧化物材料. 这些系列进展不仅澄清了强关联电子体系中晶格与自旋等序参量之间的强耦合关系, 而且为实现氧化物自旋电子器件所需的超薄室温铁磁材料提供了优良的候选者.Strongly correlated electronic system contains strong coupling among multi-order parameters and is easy to efficiently tune by external field. Cobaltite (LaCoO3) is a typical multiferroic (ferroelastic and ferromagnetic) material, which has been extensively investigated over decades. Conventional research on cobaltites has focused on the ferroelastic phase transition and structure modulation under stress. Recently, researchers have discovered that cobaltite thin films undergo a paramagnetic-to-ferromagnetic phase transition under tensile strain, however, its origin has been controversial over decades. Some experimental evidence shows that stress leads the valence state of cobalt ions to decrease, and thus producing spin state transition. Other researchers believe that the stress-induced nano-domain structure will present a long-range ordered arrangement of high spin states, which is the main reason for producing the ferromagnetism of cobalt oxide films. In this paper, we review a series of recent researches of the strong correlation between spin and lattice degrees of freedom in cobalt oxide thin films and heterojunctions. The reversible spin state transition in cobalt oxide film is induced by structural factors such as thin-film thickness, lattice mismatch stress, crystal symmetry, surface morphology, interfacial oxygen ion coordination, and oxygen octahedral tilting while the valence state of cobalt ions is kept unchanged, and thus forming highly adjustable macroscopic magnetism. Furthermore, the atomic-level precision controllable film growth technology is utilized to construct single cell layer cobaltite superlattices, thereby achieving ultra-thin two-dimensional magnetic oxide materials through efficient structure regulation. These advances not only clarified the strong coupling between lattice and spin order parameters in the strongly correlated electronic system, but also provided excellent candidate for the realization of ultra-thin room temperature ferromagnets that are required by oxide spintronic devices.
-
Keywords:
- ferromagnetic oxides /
- lattice distortion /
- polarized neutron reflection /
- spin state transition /
- ferroelastic phase transition
[1] Spaldin N A, Fiebig M 2005 Science 309 391Google Scholar
[2] Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21Google Scholar
[3] Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar
[4] Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046
[5] Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar
[6] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar
[7] He X, Wang Y, Wu N, Caruso N C, Vescovo E, Belashchenko K D, Dowben P A, Binek C 2010 Nat. Mater. 9 579Google Scholar
[8] Schoenher P, Manz S, Kuerten L, Shapovalov K, Lyama A, Kimura T, Fiebig M, Meier D 2020 npj Quantum Mater. 5 86Google Scholar
[9] Scott J F, Blinc R 2011 J. Phys. Condens. Matter 23 113202Google Scholar
[10] Lapine M, Shadrivov I V, Powell D A, Kivshar Y S 2012 Nat. Mater. 11 30Google Scholar
[11] Zhou Y, Han S T 2020 Science 367 627Google Scholar
[12] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R 2004 Science 303 661Google Scholar
[13] Zhang S, Zhao Y G, Li P S, Yang J J, Rizwan S, Zhang J X, Seidel J, Qu T L, Yang Y J, Luo Z L, He Q, Zou T, Chen Q P, Wang J W, Yang L F, Sun Y, Wu Y Z, Xiao X, Jin X F, Huang J, Gao C, Han X F, Ramesh R 2012 Phys. Rev. Lett. 108 137203Google Scholar
[14] Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J, Sun N X 2013 Adv. Mater. 25 1435Google Scholar
[15] Manipatruni S, Nikonov D E, Lin C C, Prasad B, Huang Y L, Damodaran A R, Chen Z, Ramesh R, Young I A 2018 Sci. Adv. 4 eaat4229Google Scholar
[16] Lindemann S, Irwin J, Kim G Y, Wang B, Eom K, Wang J J, Hu J M, Chen L Q, Choi S Y, Eom C B, Rzchowski M S 2021 Sci. Adv. 7 eabh2294Google Scholar
[17] Raccah P M, Goodenough J B 1967 Phys. Rev. 155 932Google Scholar
[18] Vullum P E, Lein H L, Einarsrud M A, Grande T, Holmestad R 2008 Philos. Mag. 88 1187Google Scholar
[19] Lugovy M, Slyunyayev V, Orlovskaya N, Verbyio D, Reece M J 2008 Phys. Rev. B 78 024107Google Scholar
[20] Asai K, Gehring P, Chou H, Shirane G 1989 Phys. Rev. B 40 10982Google Scholar
[21] Abbate M, Fuggle J C, Fujimori A, Tjeng L H, Chen C T, Potze R, Sawatzky G A, Eisaki H, Uchida S 1993 Phys. Rev. B 47 16124Google Scholar
[22] Barman S R, Sarma D D 1994 Phys. Rev. B 49 13979Google Scholar
[23] Asai K, Yokokura O, Suzuki M, Naka T, Matsumoto T, Takahashi H, Môri N, Kohn K 1997 J. Phys. Soc. Jpn. 66 967Google Scholar
[24] Yamaguchi S, Okimoto Y, Tokura Y 1997 Phys. Rev. B 55 R8666Google Scholar
[25] Radaelli P G, Cheong S W 2002 Phys. Rev. B 66 094408Google Scholar
[26] Zhou J S, Yan J Q, Goodenough J B 2005 Phys. Rev. B 71 220103Google Scholar
[27] Knížek K, Novák P, Jirák Z 2005 Phy. Rev. B 71 054420Google Scholar
[28] Vankó G, Rueff J P, Mattila A, Németh Z, Shukla A 2006 Phys. Rev. B 73 024424Google Scholar
[29] Haverkort M W, Hu Z, Cezar J C, Burnus T, Hartmann H, Reuther M, Zobel C, Lorenz T, Tanaka A, Brookes N B, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 176405Google Scholar
[30] Podlesnyak A, Streule S, Mesot J, Medarde M, Pomjakushina E, Conder K, Tanaka A, Haverkort M W, Khomskii D I 2006 Phys. Rev. Lett. 97 247208Google Scholar
[31] Koehler W C, Wollan E O 1957 J. Phys. Chem. Solids 2 100Google Scholar
[32] Menyuk N, Dwight K, Raccah P M 1967 J. Phys. Chem. Solids 28 549Google Scholar
[33] Thornton G, Tofield B C, Hewat A W 1986 J. Solid State Chem. 61 301Google Scholar
[34] Androulakis J, Katsarakis N, Giapintzakis J 2001 Phys. Rev. B 64 174401Google Scholar
[35] Yan J Q, Zhou J S, Goodenough J B 2004 Phys. Rev. B 70 014402Google Scholar
[36] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G, Löhneysen H V 2007 Phys. Rev. B 75 144402Google Scholar
[37] Zhou S, Shi L, Zhao J, He L F, Yang H P, Zhang S M 2007 Phys. Rev. B 76 172407Google Scholar
[38] Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R, Löhneysen H V 2008 Phys. Rev. B 77 014434Google Scholar
[39] Herklotz A, Rata A D, Schultz L, Dörr K 2009 Phys. Rev. B 79 092409Google Scholar
[40] Rata A D, Herklotz A, Schultz L, Dörr K 2010 Eur. Phys. J. B. 76 215Google Scholar
[41] Mehta V V, Liberati M, Wong F J, Chopdekar R V, Arenholz E, Suzuki Y 2009 J. Appl. Phys. 105 07E503Google Scholar
[42] Fuchs D, Dieterle L, Arac E, Eder R, Adelmann P, Eyert V, Kopp T, Schneider R, Gerthsen D, Löhneysen H V 2009 Phys. Rev. B 79 024424Google Scholar
[43] Gupta K, Mahadevan P 2009 Phys. Rev. B 79 020406Google Scholar
[44] Seo H, Posadas A, Demkov A A 2012 Phys. Rev. B 86 014430Google Scholar
[45] Posadas A, Berg M, Seo H, Smith D J, Kirk A P, Zhernokletov D, Wallace R M, de Lozanne A, Demkov A A 2011 Microelectron. Eng. 88 1444Google Scholar
[46] Biškup N, Salafranca J, Mehta V, Oxley M P, Suzuki Y, Pennycook S J, Pantelodes S T, Varela M 2014 Phys. Rev. Lett. 112 087202Google Scholar
[47] Mehta V V, Biskup N, Jenkins C, Arenholz E, Varela M, Suzuki Y 2015 Phys. Rev. B 91 144418Google Scholar
[48] Klie R F, Zheng J C, Zhu Y, Varela M, Wu J, Leighton C 2007 Phys. Rev. Lett. 99 047203Google Scholar
[49] Hamann-Borrero J E, Macke S, Choi W S, Sutarto R, He F Z, Radi A, Elfimov I, Green R J, Haverkort M W, Zaboloynyy V B, Lee H N, Sawatzky G A, Hinkov V 2016 npj Quantum Mater. 1 16013Google Scholar
[50] Freeland J W, Ma J X, Shi J 2008 Appl. Phys. Lett. 93 212501Google Scholar
[51] Merz M, Nagel P, Pinta C, Samartsev A, Lohneysen H V, Wissinger M, Uebe S, Assmann A, Fuchs D, Schuppler S 2010 Phys. Rev. B 82 174416Google Scholar
[52] Sterbinsky G E, Ryan P J, Kim J W, Karapetrova E, Ma J X, Shi J, Woicik J C 2012 Phys. Rev. B 85 020403
[53] Choi W S, Kwon J H, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F Z, Sawatzky G A, Hinkov V, Kim M, Lee H N 2012 Nano Lett. 12 4966Google Scholar
[54] Kwon J H, Choi W S, Kwon Y K, Jung R J, Zuo J M, Lee H N, Kim M 2014 Chem. Mater. 26 2496Google Scholar
[55] Meng D C, Guo H L, Cui Z Z, Ma C, Zhao J, Lu J B, Xu H, Wang Z C, Hu X, Fu Z P, Reng R R, Guo J H, Zhai X F, Brown G J, Knize R, Lu Y L 2018 PNAS 115 2873Google Scholar
[56] Feng Q Y, Meng D C, Zhou H B, Liang G H, Cui Z Z, Huang H L, Wang J L, Guo J H, Ma C, Zhai X F, Lu Q Y, Lu Y L 2019 Phys. Rev. Mater. 3 074406Google Scholar
[57] Sterbinsky G E, Nanguneri R, Ma J X, Shi J, Karapetrova E, Woicik J C, Park H, Kim J W, Ryan P J 2018 Phys. Rev. Lett. 120 197201Google Scholar
[58] Yokoyama Y, Yamasaki Y, Taguchi M, Hirata Y, Takubo K, Miyawaki J, Harada Y, Asakura D, Fujioka J, Nakamura M, Daimon H, Kawasaki M, Tokura Y, Wadati H 2018 Phys. Rev. Lett. 120 206402Google Scholar
[59] Rondinelli J M, Spaldin N A 2009 Phys. Rev. B 79 054409Google Scholar
[60] Li S S, Wang J S, Zhang Q H, Roldan M A, Lin S, Jin Q, Chen S, Wu Z P, Wang C, Ge C, He M, Guo H Z, Gu L, Jin K J, Guo E J 2019 Phys. Rev. Mater. 3 114409Google Scholar
[61] Yao H B, Guo E J, Ge C, Wang C, Yang G Z, Jin K J 2022 Chin. Phys. B 31 088106Google Scholar
[62] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589Google Scholar
[63] Guo E J, Desautels R D, Keavney D, Herklotz A, Ward T Z, Fitzsimmons M R, Lee H N 2019 Phys. Rev. Mater. 3 014407Google Scholar
[64] Chen C T, Idzerda Y U, Lin H J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E, Sette F 1995 Phys. Rev. Lett. 75 152Google Scholar
[65] Rondinelli J M, Spaldin N A 2011 Adv. Mater. 23 3363Google Scholar
[66] Guo E J, Desautels R, Lee D, Roldan M A, Liao Z L, Charlton T, Ambaye H, Molaison J, Boehler R, Keavney D, Herklotz A, Ward T Z, Lee H N, Fitzsimmons M R 2019 Phys. Rev. Lett. 122 187202Google Scholar
[67] Guo E J, Desautels R, Keavney D, Roldan M A, Kirby B J, Lee D, Liao Z L, Charlton T, Herklotz A, Ward T Z, Fitzsimmons M R, Lee H N 2019 Sci. Adv. 5 eaav5050Google Scholar
[68] Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131Google Scholar
[69] Zhong Z C, Koster G, Kelly P J 2012 Phys. Rev. B 85 121411Google Scholar
[70] Samal D, Tan H, Molegraaf H, Kuiper B, Siemons W, Bals S, Verbeeck J, Tendeloo G V, Takamura Y, Arenholz E, Jenkins C A, Rijnders G, Koster G 2013 Phys. Rev. Lett. 111 096102Google Scholar
[71] Liao Z L, Skoropata E, Freeland J W, Guo E J, Desautels R, Gao X, Sohn C, Rastogi A, Ward T Z, Zou T, Charlton T, Fitzsimmons M R, Lee H N 2019 Nat. Commun. 10 589Google Scholar
[72] Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324Google Scholar
[73] Thomas S, Kuiper B, Hu J, Smit J, Liao Z, Zhong Z, Rijnders G, Vailionis A, Wu R, Koster G, Xia J 2017 Phys. Rev. Lett. 119 177203Google Scholar
[74] Huijben M, Koster G, Liao Z L, Rijnders G 2017 Appl. Phys. Rev. 4 041103Google Scholar
[75] Lin S, Zhang Q H, Sang X H, Zhao J L, Cheng S, Huon A, Jin Q, Chen S, Chen S R, Cui W J, Guo H Z, He M, Ge C, Wang C, Wang J O, Fitzsimmons M R, Gu L, Zhu T, Jin K J, Guo E J 2021 Nano Lett. 21 3146Google Scholar
[76] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Aert S V, Verbeeck J, Tendeloo G V, Held K, Sawatzky G A, Koster G, Rijnders G, 2016 Nat. Mater. 15 425Google Scholar
[77] Kan D, Aso R, Sato R, Haruta M, Kurata H, Shimakawa Y 2016 Nat. Mater. 15 432Google Scholar
[78] Chen S R, Zhang Q H, Li X J, Zhao J L, Lin S, Jin Q, Hong H T, Huon A, Charlton T, Li Q, Yan W S, Wang J O, Ge C, Wang C, Wang B T, Fitzsimmons M R, Guo H Z, Gu L, Yin W, Jin K J, Guo E J 2022 Sci. Adv. 8 eabq3981Google Scholar
[79] Huijben M, Martin L W, Chu Y H, Holcomb M B, Yu P, Rijnders G, Blank D H A, Ramesh R 2008 Phy. Rev. B 78 094413Google Scholar
[80] Boschker H, Verbeeck J, Egoavil R, Bals S, Tendeloo G V, Huijben M, Houwman E P, Koster G, Blank D H A, Rijnders G 2012 Adv. Funct. Mater. 22 2235Google Scholar
[81] Guo E J, Roldan M A, Charlton T, Liao Z L, Zheng Q, Ambaye H, Herklotz A, Gai Z, Ward T Z, Lee H Y Fitzsimmons M R 2018 Adv. Funct. Mater. 28 1800922Google Scholar
[82] Qiao L, Jang J H, Singh D J, Gai Z, Xiao H Y, Mehta A, Vasudevan R K, Tselev A, Feng Z X, Zhou H, Li S, Prellier W, Zu X T, Liu Z J, Borisevich A, Baddorf A P, Biegalski M D 2015 Nano Lett. 15 4677Google Scholar
[83] Liu G J, Li X T, Wang Y Q, Liang W S, Liu B, Feng H L, Yang H W, Zhang J, Sun J R 2017 Appl. Surf. Sci. 425 121Google Scholar
[84] Lan Q Q, Shen X, Yang H W, Zhang H R, Zhang J, Guan X X, Yao Y, Wang Y G, Yu R C, Peng Y, Sun J R 2015 Appl. Phys. Lett. 107 242404Google Scholar
[85] Jang J H, Kim Y M, He Q, Mishra R, Qiao L, Biegalski M D, Lupini A R, Pantelides S T, Pennycook S J, Kalinin S V, Borisevich A Y 2017 ACS Nano 11 6942Google Scholar
[86] Lan Q Q, Zhang X J, Shen X, Yang H W, Zhang H R, Guan X X, Wang W, Yao Y, Wang Y G, Peng Y, Liu B G, Sun J R, Yu R C 2017 Phys. Rev. Mater. 1 024403Google Scholar
[87] Chen S, Chang J, Zhang Q, Li Q, Lin T, Meng F, Huang H, Zeng S, Yin X, Duong M, Lu Y, Chen L, Guo E J, Chen H H, Chang C F, Kuo C Y, Chen Z 2023 arXiv: 2302.06063
[88] Zhang Q H, Meng F Q, Gao A, Li X Y, Jin Q, Lin S, Chen S R, Shang T T, Zhang X, Guo H Z, Wang C, Jin K J, Wang X F, Su D, Gu L, Guo E J 2021 Nano Lett. 21 10507Google Scholar
[89] Zhang Q H, Gao A, Meng F Q, Jin Q, Lin S, Wang X F, Xiao D D, Wnag C, Jin K J, Su D, Guo E J, Gu L 2021 Nat. Commun. 12 1853Google Scholar
[90] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar
[91] Dong G H, Li S Z, Yao M T, Zhou Z Y, Zhang Y Q, Han X, Luo Z L, Yao J X, Peng B, Hu Z Q, Huang H B, Jia T T, Li J Y, Ren W, Ye Z G, Ding X D, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar
[92] Ji D X, Cai S H, Paudel T R, Sun H Y, Zhang C C, Han L, Wei Y F, Zang Y P, Gu M, Zhang Y, Gao W P, Huyan H X, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y F, Pan X Q 2019 Nature 570 87Google Scholar
[93] Chen S R, Zhang Q H, Rong D K, Xu Y, Zhang J F, Pei F F, Bai H, Shang Y X, Li S, Jin Q, Hong H T, Wang C, Yan W S, Guo H Z, Zhu T, Gu L, Gong Y, Li Q, Wang L F, Liu G Q, Jin K J, Guo E J 2022 Adv. Mater. 35 2206961
[94] Chen H W, Dong M M, Hu Y, Lin T, Zhang Q H, Guo E J, Gu L, Wu J, Lu Q Y 2022 Nano Lett. 22 8983Google Scholar
[95] Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar
[96] Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246Google Scholar
[97] Yajima T, Takeiri F, Aidzu K, Akamatsu H, Fujita K, Yoshimune W, Ohkura M, Lei S M, Gopalan V, Tanaka K, Brown C M, Green M A, Yamamoto T, Kobayashi Y, Kageyama H 2015 Nat. Chem. 7 1017Google Scholar
[98] Moon E J, Xie Y F, Laird E D, Keavney D J, Li C Y, May S J 2014 J. Am. Chem. Soc. 136 2224Google Scholar
-
图 1 钴氧化物是典型的铁弹和铁磁共存的多铁性材料 (a) LaCoO3的原子结构示意图; (b) LaCoO3陶瓷材料中存在不同取向的铁弹畴 [18]; (c) LaCoO3的块材(空心圆圈)和薄膜(实心圆圈)的磁性随温度变化曲线(1 emu/g = 1 A·m2/kg), 插图为LaCoO3薄膜在5 K时的铁磁回线[36]
Fig. 1. Lanthanum cobaltites is a typical multiferroic materials with coexistence of ferromagnetism and ferroelasticity: (a) Schematic of atomic structure of LaCoO3; (b) crossing (100) and (110) twins present in the same grain in LaCoO3[18]; (c) magnetization vs. temperature curves of LaCoO3 bulk (open circle) and thin films (solid circle), inset shows the magnetic hysteresis loop at 5 K[36].
图 2 钴氧化物中铁磁性起源一直争议不断 (a) LaCoO3薄膜中黑色条纹处的Co离子价态比其他地方的Co离子价态较低[46,47]; (b)理论模拟和实验测量的氧K和钴L吸收边电子能量损失谱的对比, 证明黑色条纹处存在氧空位; (c)实验观测的LaCoO3薄膜中的黑色条纹畴; (d) LaCoO3薄膜的原子结构和Co自旋分布, 显示纳米畴亦可呈现自旋有序排列[53]
Fig. 2. Origin of ferromagnetism in cobalt oxides has been controversial: (a) The valence states of Co ions at the black stripes in the LaCoO3 films are lower than those elsewhere[46,47]; (b) comparison of the theoretically simulated and experimentally measured electron-energy loss spectra at O K- and Co L-edges, demonstrating the existence of oxygen vacancies at the dark stripes; (c) experimentally observed dark stripe domains in LaCoO3 films; (d) the corresponding atomic structure and spin state distributions of Co ions in (c), showing that nanodomains can also exhibit spin ordering[53].
图 3 不同厚度LaCoO3薄膜的结构和磁性表征 (a)不同厚度LaCoO3薄膜的X射线衍射结果; (b)不同厚度LaCoO3薄膜在10 K时的铁磁回线; (c) LaCoO3薄膜的饱和磁矩(Msat)随薄膜厚度的变化关系; (d)非线性光学二次谐波信号随薄膜厚度的变化关系[60]
Fig. 3. Structural and magnetic characterization of LaCoO3 films with different thicknesses: (a) X-ray diffraction curves of LaCoO3 films with different thicknesses; (b) magnetic hysteresis loops of LaCoO3 films with different thicknesses at 10 K; (c) the saturation magnetic moment (Msat) of the LaCoO3 film as a function of film thickness; (d) second harmonic generation signal of nonlinear optics as a function of film thickness[60].
图 4 不同晶格失配应力下LaCoO3薄膜的结构和磁性表征 (a) LaCoO3与不同衬底的晶格常数对比示意图; (b)不同衬底上外延LaCoO3薄膜的倒异空间矢量图; (c) LaCoO3薄膜的饱和磁矩随应力的变化关系; (d) LaCoO3薄膜的轨道极化率随应力的变化关系[63]
Fig. 4. Structural and magnetic characterization of LaCoO3 thin films under different misfit strains: (a) Schematic diagram comparing the lattice constants of LaCoO3 and different substrates; (b) reciprocal space maps of epitaxial LaCoO3 thin films on different substrates; (c) variation of saturation magnetic moment of LaCoO3 films with misfit strain; (d) orbital susceptibility of LaCoO3 film as a function of stress[63].
图 5 LaCoO3薄膜的磁性和结构随厚度的变化关系 (a) LaCoO3薄膜的界面呈现四方晶体结构; (b) LaCoO3薄膜的内部呈现单斜晶体结构; (c) SrTiO3/LaCoO3双层薄膜的高分辨透射电子显微镜图, 插图显示了薄膜的原子密度和磁矩随厚度的变化关系[66]
Fig. 5. Magnetic properties and structure of LaCoO3 films as a function of film thickness: (a) The interface of the LaCoO3 thin film presents a tetragonal crystal structure; (b) the interior of the LaCoO3 film presents a monoclinic crystal structure; (c) high-resolution transmission electron microscope (TEM) image of SrTiO3/LaCoO3 bilayer film, the inset shows the atomic density and magnetic moment of the film as a function of thickness[66].
图 6 LaCoO3薄膜的表面形貌调控一维结构畴和磁各向异性 (a)一维铁弹畴的示意图; (b)具有一维结构畴的LaCoO3薄膜(002)衍射峰的Phi扫描图; 晶相对具有一维铁弹畴LaCoO3薄膜的(c)磁矩-磁场变化关系和(d)磁矩-温度变化关系的影响[67]
Fig. 6. Surface topography of LaCoO3 thin films regulates one-dimensional (1D) structural domains and magnetic anisotropy: (a) Schematic illustration of a 1D ferroelastic domain; (b) Phi scan of the (002) diffraction peaks of the LaCoO3 thin film with one-dimensional structural domains; (c) magnetic hysteresis loops and (d) magnetization as a function of temperature of LaCoO3 films with one-dimensional ferroelastic domains[67].
图 7 界面氧构型对LaCoO3薄膜结构和磁性的影响 (a)不同周期和层厚的[(LaCoO3)m/(SrCuO2)n](LmSn)超晶格的高分辨透射电子显微镜图; (b)和(c)在L3S3和L3S8超晶格中LaCoO3和SrCuO2薄膜的晶格常数随厚度的变化关系; (d)和(e)在L3S3和L3S8超晶格中Cu L吸收边的X射线线性吸收谱; LmSn超晶格中(f)平均晶格常数、(g)饱和磁矩和(h)矫顽场随SrCuO2薄膜厚度的变化关系[72]
Fig. 7. Effect of interfacial oxygen configuration on the structure and magnetic properties of LaCoO3 thin films: (a) High-resolution TEM images of [(LaCoO3)m/(SrCuO2)n](LmSn) superlattices with different repetitions and layer thicknesses; (b) and (c) lattice constants of LaCoO3 and SrCuO2 films as a function of thickness in L3S3 and L3S8 superlattices; (d) and (e) X-ray linear dichroism of the Cu L-edge in L3S3 and L3S8 superlattices; (f) average lattice constant, (g) saturation magnetic moment and (h) coercive field as a function of SrCuO2 film thickness in LmSn superlattice[72].
图 8 氧八面体倾转对单原胞层钴氧化物的结构和自旋态影响 (a) LaCoO3/DyScO3超晶格的高分辨透射电子显微镜的暗场像以及氧八面体倾角随薄膜厚度的变化关系; (b) SrTiO3衬底和(c) LaCoO3/DyScO3超晶格的明场像, 图中插图显示了八面体倾转的结构示意图; (d)利用第一性原理计算钴自旋态转变能级差与八面体转变之间的关系; (e) LaCoO3薄膜的饱和磁矩与晶格拉伸的关系[78]
Fig. 8. Effect of oxygen octahedral tilting on the structure and spin state of single unit cell cobaltites: (a) High-resolution TEM dark-field image of LaCoO3/DyScO3 superlattice and the oxygen octahedral tilt angle as a function of film thickness; bright-field images of (b) SrTiO3 substrate and (c) LaCoO3/DyScO3 superlattice, the inset shows a schematic diagram of the octahedral tilted structure; (d) first-principles calculation of cobalt spin-state transition energy level difference as a function of the octahedral tilt angle; (e) the saturation moment of LaCoO3 films as a function of lattice stretching[78].
图 9 DyScO3/LaCoO3(D1L1), LaFeO3/LaCoO3(F1L1)和SrTiO3/LaCoO3(S1L1)超晶格的磁性随磁场的变化关系, 插图显示了F1L1 和S1L1超晶格中氧八面体倾转的示意图 [78]
Fig. 9. Magnetic field dependent magnetization of DyScO3/LaCoO3 (D1L1), LaFeO3/LaCoO3 (F1L1) and SrTiO3/LaCoO3 (S1L1) superlattices. The inset shows schematic diagrams of the oxygen octahedral tilt in the F1L1 and S1L1 superlattices[78]
图 10 钴离子自旋态与晶格参数的构效关系 (a)—(c)钴离子的(a)低自旋态、(b)中自旋态和(c)高自旋态的电子轨道占据示意图; (d)不同晶格畸变方式诱导钴离子不同自旋态之间的转化过程
Fig. 10. Relationship between cobalt ion spin states and lattice parameters: Schematic illustration of the electron orbital occupancy of (a) low-spin state, (b) intermedium-spin state, and (c) high-spin state of cobalt ions; (d) the conversion process between different spin states of cobalt ions induced by different lattice distortions.
-
[1] Spaldin N A, Fiebig M 2005 Science 309 391Google Scholar
[2] Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21Google Scholar
[3] Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar
[4] Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046
[5] Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar
[6] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar
[7] He X, Wang Y, Wu N, Caruso N C, Vescovo E, Belashchenko K D, Dowben P A, Binek C 2010 Nat. Mater. 9 579Google Scholar
[8] Schoenher P, Manz S, Kuerten L, Shapovalov K, Lyama A, Kimura T, Fiebig M, Meier D 2020 npj Quantum Mater. 5 86Google Scholar
[9] Scott J F, Blinc R 2011 J. Phys. Condens. Matter 23 113202Google Scholar
[10] Lapine M, Shadrivov I V, Powell D A, Kivshar Y S 2012 Nat. Mater. 11 30Google Scholar
[11] Zhou Y, Han S T 2020 Science 367 627Google Scholar
[12] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R 2004 Science 303 661Google Scholar
[13] Zhang S, Zhao Y G, Li P S, Yang J J, Rizwan S, Zhang J X, Seidel J, Qu T L, Yang Y J, Luo Z L, He Q, Zou T, Chen Q P, Wang J W, Yang L F, Sun Y, Wu Y Z, Xiao X, Jin X F, Huang J, Gao C, Han X F, Ramesh R 2012 Phys. Rev. Lett. 108 137203Google Scholar
[14] Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J, Sun N X 2013 Adv. Mater. 25 1435Google Scholar
[15] Manipatruni S, Nikonov D E, Lin C C, Prasad B, Huang Y L, Damodaran A R, Chen Z, Ramesh R, Young I A 2018 Sci. Adv. 4 eaat4229Google Scholar
[16] Lindemann S, Irwin J, Kim G Y, Wang B, Eom K, Wang J J, Hu J M, Chen L Q, Choi S Y, Eom C B, Rzchowski M S 2021 Sci. Adv. 7 eabh2294Google Scholar
[17] Raccah P M, Goodenough J B 1967 Phys. Rev. 155 932Google Scholar
[18] Vullum P E, Lein H L, Einarsrud M A, Grande T, Holmestad R 2008 Philos. Mag. 88 1187Google Scholar
[19] Lugovy M, Slyunyayev V, Orlovskaya N, Verbyio D, Reece M J 2008 Phys. Rev. B 78 024107Google Scholar
[20] Asai K, Gehring P, Chou H, Shirane G 1989 Phys. Rev. B 40 10982Google Scholar
[21] Abbate M, Fuggle J C, Fujimori A, Tjeng L H, Chen C T, Potze R, Sawatzky G A, Eisaki H, Uchida S 1993 Phys. Rev. B 47 16124Google Scholar
[22] Barman S R, Sarma D D 1994 Phys. Rev. B 49 13979Google Scholar
[23] Asai K, Yokokura O, Suzuki M, Naka T, Matsumoto T, Takahashi H, Môri N, Kohn K 1997 J. Phys. Soc. Jpn. 66 967Google Scholar
[24] Yamaguchi S, Okimoto Y, Tokura Y 1997 Phys. Rev. B 55 R8666Google Scholar
[25] Radaelli P G, Cheong S W 2002 Phys. Rev. B 66 094408Google Scholar
[26] Zhou J S, Yan J Q, Goodenough J B 2005 Phys. Rev. B 71 220103Google Scholar
[27] Knížek K, Novák P, Jirák Z 2005 Phy. Rev. B 71 054420Google Scholar
[28] Vankó G, Rueff J P, Mattila A, Németh Z, Shukla A 2006 Phys. Rev. B 73 024424Google Scholar
[29] Haverkort M W, Hu Z, Cezar J C, Burnus T, Hartmann H, Reuther M, Zobel C, Lorenz T, Tanaka A, Brookes N B, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 176405Google Scholar
[30] Podlesnyak A, Streule S, Mesot J, Medarde M, Pomjakushina E, Conder K, Tanaka A, Haverkort M W, Khomskii D I 2006 Phys. Rev. Lett. 97 247208Google Scholar
[31] Koehler W C, Wollan E O 1957 J. Phys. Chem. Solids 2 100Google Scholar
[32] Menyuk N, Dwight K, Raccah P M 1967 J. Phys. Chem. Solids 28 549Google Scholar
[33] Thornton G, Tofield B C, Hewat A W 1986 J. Solid State Chem. 61 301Google Scholar
[34] Androulakis J, Katsarakis N, Giapintzakis J 2001 Phys. Rev. B 64 174401Google Scholar
[35] Yan J Q, Zhou J S, Goodenough J B 2004 Phys. Rev. B 70 014402Google Scholar
[36] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G, Löhneysen H V 2007 Phys. Rev. B 75 144402Google Scholar
[37] Zhou S, Shi L, Zhao J, He L F, Yang H P, Zhang S M 2007 Phys. Rev. B 76 172407Google Scholar
[38] Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R, Löhneysen H V 2008 Phys. Rev. B 77 014434Google Scholar
[39] Herklotz A, Rata A D, Schultz L, Dörr K 2009 Phys. Rev. B 79 092409Google Scholar
[40] Rata A D, Herklotz A, Schultz L, Dörr K 2010 Eur. Phys. J. B. 76 215Google Scholar
[41] Mehta V V, Liberati M, Wong F J, Chopdekar R V, Arenholz E, Suzuki Y 2009 J. Appl. Phys. 105 07E503Google Scholar
[42] Fuchs D, Dieterle L, Arac E, Eder R, Adelmann P, Eyert V, Kopp T, Schneider R, Gerthsen D, Löhneysen H V 2009 Phys. Rev. B 79 024424Google Scholar
[43] Gupta K, Mahadevan P 2009 Phys. Rev. B 79 020406Google Scholar
[44] Seo H, Posadas A, Demkov A A 2012 Phys. Rev. B 86 014430Google Scholar
[45] Posadas A, Berg M, Seo H, Smith D J, Kirk A P, Zhernokletov D, Wallace R M, de Lozanne A, Demkov A A 2011 Microelectron. Eng. 88 1444Google Scholar
[46] Biškup N, Salafranca J, Mehta V, Oxley M P, Suzuki Y, Pennycook S J, Pantelodes S T, Varela M 2014 Phys. Rev. Lett. 112 087202Google Scholar
[47] Mehta V V, Biskup N, Jenkins C, Arenholz E, Varela M, Suzuki Y 2015 Phys. Rev. B 91 144418Google Scholar
[48] Klie R F, Zheng J C, Zhu Y, Varela M, Wu J, Leighton C 2007 Phys. Rev. Lett. 99 047203Google Scholar
[49] Hamann-Borrero J E, Macke S, Choi W S, Sutarto R, He F Z, Radi A, Elfimov I, Green R J, Haverkort M W, Zaboloynyy V B, Lee H N, Sawatzky G A, Hinkov V 2016 npj Quantum Mater. 1 16013Google Scholar
[50] Freeland J W, Ma J X, Shi J 2008 Appl. Phys. Lett. 93 212501Google Scholar
[51] Merz M, Nagel P, Pinta C, Samartsev A, Lohneysen H V, Wissinger M, Uebe S, Assmann A, Fuchs D, Schuppler S 2010 Phys. Rev. B 82 174416Google Scholar
[52] Sterbinsky G E, Ryan P J, Kim J W, Karapetrova E, Ma J X, Shi J, Woicik J C 2012 Phys. Rev. B 85 020403
[53] Choi W S, Kwon J H, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F Z, Sawatzky G A, Hinkov V, Kim M, Lee H N 2012 Nano Lett. 12 4966Google Scholar
[54] Kwon J H, Choi W S, Kwon Y K, Jung R J, Zuo J M, Lee H N, Kim M 2014 Chem. Mater. 26 2496Google Scholar
[55] Meng D C, Guo H L, Cui Z Z, Ma C, Zhao J, Lu J B, Xu H, Wang Z C, Hu X, Fu Z P, Reng R R, Guo J H, Zhai X F, Brown G J, Knize R, Lu Y L 2018 PNAS 115 2873Google Scholar
[56] Feng Q Y, Meng D C, Zhou H B, Liang G H, Cui Z Z, Huang H L, Wang J L, Guo J H, Ma C, Zhai X F, Lu Q Y, Lu Y L 2019 Phys. Rev. Mater. 3 074406Google Scholar
[57] Sterbinsky G E, Nanguneri R, Ma J X, Shi J, Karapetrova E, Woicik J C, Park H, Kim J W, Ryan P J 2018 Phys. Rev. Lett. 120 197201Google Scholar
[58] Yokoyama Y, Yamasaki Y, Taguchi M, Hirata Y, Takubo K, Miyawaki J, Harada Y, Asakura D, Fujioka J, Nakamura M, Daimon H, Kawasaki M, Tokura Y, Wadati H 2018 Phys. Rev. Lett. 120 206402Google Scholar
[59] Rondinelli J M, Spaldin N A 2009 Phys. Rev. B 79 054409Google Scholar
[60] Li S S, Wang J S, Zhang Q H, Roldan M A, Lin S, Jin Q, Chen S, Wu Z P, Wang C, Ge C, He M, Guo H Z, Gu L, Jin K J, Guo E J 2019 Phys. Rev. Mater. 3 114409Google Scholar
[61] Yao H B, Guo E J, Ge C, Wang C, Yang G Z, Jin K J 2022 Chin. Phys. B 31 088106Google Scholar
[62] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589Google Scholar
[63] Guo E J, Desautels R D, Keavney D, Herklotz A, Ward T Z, Fitzsimmons M R, Lee H N 2019 Phys. Rev. Mater. 3 014407Google Scholar
[64] Chen C T, Idzerda Y U, Lin H J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E, Sette F 1995 Phys. Rev. Lett. 75 152Google Scholar
[65] Rondinelli J M, Spaldin N A 2011 Adv. Mater. 23 3363Google Scholar
[66] Guo E J, Desautels R, Lee D, Roldan M A, Liao Z L, Charlton T, Ambaye H, Molaison J, Boehler R, Keavney D, Herklotz A, Ward T Z, Lee H N, Fitzsimmons M R 2019 Phys. Rev. Lett. 122 187202Google Scholar
[67] Guo E J, Desautels R, Keavney D, Roldan M A, Kirby B J, Lee D, Liao Z L, Charlton T, Herklotz A, Ward T Z, Fitzsimmons M R, Lee H N 2019 Sci. Adv. 5 eaav5050Google Scholar
[68] Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131Google Scholar
[69] Zhong Z C, Koster G, Kelly P J 2012 Phys. Rev. B 85 121411Google Scholar
[70] Samal D, Tan H, Molegraaf H, Kuiper B, Siemons W, Bals S, Verbeeck J, Tendeloo G V, Takamura Y, Arenholz E, Jenkins C A, Rijnders G, Koster G 2013 Phys. Rev. Lett. 111 096102Google Scholar
[71] Liao Z L, Skoropata E, Freeland J W, Guo E J, Desautels R, Gao X, Sohn C, Rastogi A, Ward T Z, Zou T, Charlton T, Fitzsimmons M R, Lee H N 2019 Nat. Commun. 10 589Google Scholar
[72] Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324Google Scholar
[73] Thomas S, Kuiper B, Hu J, Smit J, Liao Z, Zhong Z, Rijnders G, Vailionis A, Wu R, Koster G, Xia J 2017 Phys. Rev. Lett. 119 177203Google Scholar
[74] Huijben M, Koster G, Liao Z L, Rijnders G 2017 Appl. Phys. Rev. 4 041103Google Scholar
[75] Lin S, Zhang Q H, Sang X H, Zhao J L, Cheng S, Huon A, Jin Q, Chen S, Chen S R, Cui W J, Guo H Z, He M, Ge C, Wang C, Wang J O, Fitzsimmons M R, Gu L, Zhu T, Jin K J, Guo E J 2021 Nano Lett. 21 3146Google Scholar
[76] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Aert S V, Verbeeck J, Tendeloo G V, Held K, Sawatzky G A, Koster G, Rijnders G, 2016 Nat. Mater. 15 425Google Scholar
[77] Kan D, Aso R, Sato R, Haruta M, Kurata H, Shimakawa Y 2016 Nat. Mater. 15 432Google Scholar
[78] Chen S R, Zhang Q H, Li X J, Zhao J L, Lin S, Jin Q, Hong H T, Huon A, Charlton T, Li Q, Yan W S, Wang J O, Ge C, Wang C, Wang B T, Fitzsimmons M R, Guo H Z, Gu L, Yin W, Jin K J, Guo E J 2022 Sci. Adv. 8 eabq3981Google Scholar
[79] Huijben M, Martin L W, Chu Y H, Holcomb M B, Yu P, Rijnders G, Blank D H A, Ramesh R 2008 Phy. Rev. B 78 094413Google Scholar
[80] Boschker H, Verbeeck J, Egoavil R, Bals S, Tendeloo G V, Huijben M, Houwman E P, Koster G, Blank D H A, Rijnders G 2012 Adv. Funct. Mater. 22 2235Google Scholar
[81] Guo E J, Roldan M A, Charlton T, Liao Z L, Zheng Q, Ambaye H, Herklotz A, Gai Z, Ward T Z, Lee H Y Fitzsimmons M R 2018 Adv. Funct. Mater. 28 1800922Google Scholar
[82] Qiao L, Jang J H, Singh D J, Gai Z, Xiao H Y, Mehta A, Vasudevan R K, Tselev A, Feng Z X, Zhou H, Li S, Prellier W, Zu X T, Liu Z J, Borisevich A, Baddorf A P, Biegalski M D 2015 Nano Lett. 15 4677Google Scholar
[83] Liu G J, Li X T, Wang Y Q, Liang W S, Liu B, Feng H L, Yang H W, Zhang J, Sun J R 2017 Appl. Surf. Sci. 425 121Google Scholar
[84] Lan Q Q, Shen X, Yang H W, Zhang H R, Zhang J, Guan X X, Yao Y, Wang Y G, Yu R C, Peng Y, Sun J R 2015 Appl. Phys. Lett. 107 242404Google Scholar
[85] Jang J H, Kim Y M, He Q, Mishra R, Qiao L, Biegalski M D, Lupini A R, Pantelides S T, Pennycook S J, Kalinin S V, Borisevich A Y 2017 ACS Nano 11 6942Google Scholar
[86] Lan Q Q, Zhang X J, Shen X, Yang H W, Zhang H R, Guan X X, Wang W, Yao Y, Wang Y G, Peng Y, Liu B G, Sun J R, Yu R C 2017 Phys. Rev. Mater. 1 024403Google Scholar
[87] Chen S, Chang J, Zhang Q, Li Q, Lin T, Meng F, Huang H, Zeng S, Yin X, Duong M, Lu Y, Chen L, Guo E J, Chen H H, Chang C F, Kuo C Y, Chen Z 2023 arXiv: 2302.06063
[88] Zhang Q H, Meng F Q, Gao A, Li X Y, Jin Q, Lin S, Chen S R, Shang T T, Zhang X, Guo H Z, Wang C, Jin K J, Wang X F, Su D, Gu L, Guo E J 2021 Nano Lett. 21 10507Google Scholar
[89] Zhang Q H, Gao A, Meng F Q, Jin Q, Lin S, Wang X F, Xiao D D, Wnag C, Jin K J, Su D, Guo E J, Gu L 2021 Nat. Commun. 12 1853Google Scholar
[90] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar
[91] Dong G H, Li S Z, Yao M T, Zhou Z Y, Zhang Y Q, Han X, Luo Z L, Yao J X, Peng B, Hu Z Q, Huang H B, Jia T T, Li J Y, Ren W, Ye Z G, Ding X D, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar
[92] Ji D X, Cai S H, Paudel T R, Sun H Y, Zhang C C, Han L, Wei Y F, Zang Y P, Gu M, Zhang Y, Gao W P, Huyan H X, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y F, Pan X Q 2019 Nature 570 87Google Scholar
[93] Chen S R, Zhang Q H, Rong D K, Xu Y, Zhang J F, Pei F F, Bai H, Shang Y X, Li S, Jin Q, Hong H T, Wang C, Yan W S, Guo H Z, Zhu T, Gu L, Gong Y, Li Q, Wang L F, Liu G Q, Jin K J, Guo E J 2022 Adv. Mater. 35 2206961
[94] Chen H W, Dong M M, Hu Y, Lin T, Zhang Q H, Guo E J, Gu L, Wu J, Lu Q Y 2022 Nano Lett. 22 8983Google Scholar
[95] Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar
[96] Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246Google Scholar
[97] Yajima T, Takeiri F, Aidzu K, Akamatsu H, Fujita K, Yoshimune W, Ohkura M, Lei S M, Gopalan V, Tanaka K, Brown C M, Green M A, Yamamoto T, Kobayashi Y, Kageyama H 2015 Nat. Chem. 7 1017Google Scholar
[98] Moon E J, Xie Y F, Laird E D, Keavney D J, Li C Y, May S J 2014 J. Am. Chem. Soc. 136 2224Google Scholar
计量
- 文章访问数: 5461
- PDF下载量: 266
- 被引次数: 0