搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学隐藏视觉密码的欺骗追踪系统

吴承哲 刘睿泽 史祎诗

引用本文:
Citation:

基于光学隐藏视觉密码的欺骗追踪系统

吴承哲, 刘睿泽, 史祎诗

Optical-hidden-visual-cryptography-based spoofing tracking system

Wu Cheng-Zhe, Liu Rui-Ze, Shi Yi-Shi
PDF
HTML
导出引用
  • 提出了一种基于光学隐藏视觉密码的欺骗追踪系统. 该系统将秘密图像分解为多幅有实际意义的掩饰图像, 将其中一张掩饰图像嵌入脆弱水印, 作为检验密钥, 检验密钥单独传输. 然后将其余掩饰图像隐藏在相位密钥中, 进行传输时有很好的不可见性. 掩饰图像的像素排列若被不诚实的参与者篡改, 则称为欺骗图像. 将每张相位密钥分发给不同的参与者, 以保证在追踪到欺骗图像时可找到对应的欺骗者. 在提取过程中, 只需要对该相位密钥进行傅里叶变换, 即可得到掩饰图像. 检验时, 将检验密钥与任一掩饰图像进行非相干叠加, 以是否出现验证图像为条件, 就可检验掩饰图像是否被篡改, 以达到欺骗追踪的目的, 将数量大于等于门限k的掩饰图像和检验密钥进行非相干叠加即可得到秘密图像, 仿真实验结果表明, 该系统可应用于利用不可见视觉密码术传递实际信息时, 对内部欺骗者的追踪.
    A deception tracking system based on optical hidden visual code is proposed. The system uses visual cryptography to decompose the secret image into a number of realistic masked images, which can be used to conceal the secret information. One of the masked images is embedded with a fragile watermark to ensure that it is not modified. This image serves as an inspection key to verify the other images, and the inspection key is transmitted separately. The rest of the camouflaged image is hidden in the phase key using the phase recovery algorithm, which ensures good invisibility during transmission. If the pixel arrangement of the masked image is tampered with by a dishonest participant, it is called a fraudulent image. Each phase key is distributed to different participants to ensure that the corresponding deceiver can be identified when the spoofing image is traced. In the extraction process, only the diffraction transformation of the phase key is needed to obtain the mask image. During the inspection, the inspection key is incoherently superimposed with any masked image, and the appearance of the verification image indicates whether the masked image has been tampered with, thereby achieving the purpose of deception tracking. The secret image can be obtained by incoherently superimposing the masking images, provided that the number of superimposed masking images is is greater than or equal to the threshold k, along with the inspection key. When the inspection key is superimposed with any masked image, if there is a spoofed image, no verification image will appear, and as a result, the secret image will not be restored. If there is no spoofed image, the verification image will appear, indicating that the secret image can be restored by covering all the images. The system can be used to track internal fraudsters when actual information is transmitted through invisible visual cryptography.
      通信作者: 史祎诗, shiyishi@ucas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3602604)、国家自然科学基金(批准号: 62131011, 62075221, 61975205)、中国科学院科教融合项目、中国科学院大学和中央高校基本科研业务费资助的课题.
      Corresponding author: Shi Yi-Shi, shiyishi@ucas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3602604), the National Natural Science Foundation of China (Grant Nos. 62131011, 62075221, 61975205), the Fusion Foundation of Research and Education of Chinese Academy of Sciences, University of Chinese Academy of Sciences, and the Fundamental Research Funds for the Central Universities of China.
    [1]

    Khan M, Shah T 2014 3D Research 5 29Google Scholar

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6 120Google Scholar

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [4]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [5]

    Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542Google Scholar

    [6]

    杨玉花, 史祎诗, 王雅丽, 肖俊, 张静娟 2011 60 034202Google Scholar

    Yang Y H, Shi Y S, Wang Y L, Xiao J, Zhang J J 2011 Acta Phys. Sin. 60 034202Google Scholar

    [7]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    Gao Q H, Wang Y L, Li T, Shi Y S 2014 Appl. Optics 53 4700Google Scholar

    [9]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 64 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201Google Scholar

    [10]

    Chanana A, Paulsen A, Guruswamy S, Nahata A 2016 Optica 3 1466Google Scholar

    [11]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [12]

    王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影 2019 68 240503Google Scholar

    Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503Google Scholar

    [13]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [14]

    Wu H C, Chang C C 2005 Comput. Stand. Interfaces 28 123Google Scholar

    [15]

    Feng J B, Wu H C, Tsai C S, Chang Y F, Chu Y P 2008 Pattern Recognit. 41 3572Google Scholar

    [16]

    Mishra A, Gupta A 2018 J. Inf. Optim. Sci. 39 631

    [17]

    Blundo C, Cimato S, Santis A D 2006 Theor. Comput. Sci. 369 169Google Scholar

    [18]

    Chen Y F, Chan Y K, Huang C C, Tsai M H, Chu Y P 2007 Inf. Sci. 177 4696Google Scholar

    [19]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin. 69 144202Google Scholar

    [20]

    周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 70 244201Google Scholar

    Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar

    [21]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [22]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

    [23]

    Yang N, Gao Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [24]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [25]

    郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码 (合肥: 中国科学技术大学出版社) 第69页

    Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Vol. 1) (Hefei: University of Science and Technology of China Press) p69

  • 图 1  再现、检验、恢复过程

    Fig. 1.  Reproducing, verifying, and restoring process.

    图 2  分解、隐藏、嵌入脆弱水印过程

    Fig. 2.  Decomposition, hiding, embedding fragile watermarking process.

    图 3  当秘密图像、验证图像、掩饰图像相同位置的像素均为白色时的编码方案

    Fig. 3.  Encoding scheme when the pixels in the same position of secret image, verification image, and masking image pixels are all white.

    图 4  GS算法流程

    Fig. 4.  GS algorithm flow.

    图 5  嵌入脆弱水印流程

    Fig. 5.  Fragile watermark embedding process.

    图 6  提取脆弱水印图像流程

    Fig. 6.  Process of extracting fragile watermark image.

    图 7  欺骗追踪过程 (a) 检验密钥; (b) 被篡改像素排列顺序的欺骗图像; (c) 从相位密钥恢复的掩饰图像; (d) 检验密钥与欺骗图像叠加结果; (e) 检验密钥与掩饰图像叠加结果; (f) 无法恢复秘密图像的结果

    Fig. 7.  Spoofing tracking process: (a) Test key; (b) spoofing images with altered pixel arrangement order; (c) masking image recovered from phase key; (d) test key and spoofing image superposition result; (e) test key and masking image superposition result; (f) failure to recover secret image.

    图 8  脆弱水印功能验证 (a) 宿主图像; (b) 水印图像; (c) 嵌入脆弱水印的宿主图像; (d) 提取水印图像; (e) 0.01椒盐噪声攻击提取的水印; (f) 0.01高斯噪声攻击提取的水印; (g) 图像压缩后提取的水印; (h) 10×10像素裁剪攻击后提取的水印

    Fig. 8.  Fragile watermarking function verification: (a) Host image; (b) watermarked image; (c) host image embedded with fragile watermark; (d) extract watermark image; (e) watermark extracted by 0.01 salt and pepper noise attack; (f) watermark extracted by 0.01 Gaussian noise attack; (g) watermark extracted after image compression; (h) watermark extracted after 10×10 pixel cropping attack.

    图 9  获得秘密图像的过程 (a) 检验密钥; (b)从相位密钥恢复出的掩饰图像1; (c)从相位密钥恢复出的掩饰图像2; (d) 检验密钥和掩饰图像1叠加得到的验证图像; (e) 检验密钥和掩饰图像2叠加得到的验证图像; (f) 3张图像叠加恢复的秘密图像

    Fig. 9.  Process of obtaining secret image: (a) Test key; (b) masking image 1 recovered from phase key; (c) masking image 2 recovered from phase key; (d) the verification image obtained by superimposing the test key and the masking image 1; (e) verification images obtained by superimposing the test key and masking image 2; (f) the secret image recovered by superimposing three images.

    图 10  (a)—(f)分别为14, 16, 18, 20, 24, 30像素大小的字符图像信息

    Fig. 10.  (a)–(f) The character images information with the size of 14, 16, 18, 20, 24 and 30 pixels respectively.

    图 11  对掩饰图像进行加噪声处理后秘密图像的相关系数曲线

    Fig. 11.  Correlation coefficient curves of secret images after noise processing of masking image.

    Baidu
  • [1]

    Khan M, Shah T 2014 3D Research 5 29Google Scholar

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6 120Google Scholar

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [4]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [5]

    Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542Google Scholar

    [6]

    杨玉花, 史祎诗, 王雅丽, 肖俊, 张静娟 2011 60 034202Google Scholar

    Yang Y H, Shi Y S, Wang Y L, Xiao J, Zhang J J 2011 Acta Phys. Sin. 60 034202Google Scholar

    [7]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    Gao Q H, Wang Y L, Li T, Shi Y S 2014 Appl. Optics 53 4700Google Scholar

    [9]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 64 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201Google Scholar

    [10]

    Chanana A, Paulsen A, Guruswamy S, Nahata A 2016 Optica 3 1466Google Scholar

    [11]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [12]

    王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影 2019 68 240503Google Scholar

    Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503Google Scholar

    [13]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [14]

    Wu H C, Chang C C 2005 Comput. Stand. Interfaces 28 123Google Scholar

    [15]

    Feng J B, Wu H C, Tsai C S, Chang Y F, Chu Y P 2008 Pattern Recognit. 41 3572Google Scholar

    [16]

    Mishra A, Gupta A 2018 J. Inf. Optim. Sci. 39 631

    [17]

    Blundo C, Cimato S, Santis A D 2006 Theor. Comput. Sci. 369 169Google Scholar

    [18]

    Chen Y F, Chan Y K, Huang C C, Tsai M H, Chu Y P 2007 Inf. Sci. 177 4696Google Scholar

    [19]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin. 69 144202Google Scholar

    [20]

    周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 70 244201Google Scholar

    Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar

    [21]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [22]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

    [23]

    Yang N, Gao Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [24]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [25]

    郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码 (合肥: 中国科学技术大学出版社) 第69页

    Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Vol. 1) (Hefei: University of Science and Technology of China Press) p69

  • [1] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪.  , 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] 刘睿泽, 祝玉鹏, 周新隆, 米沼锞, 吴承哲, 秦俏华, 柯常军, 史祎诗. 基于像素不扩展视觉密码的光学彩色脆弱水印.  , 2024, 73(13): 134202. doi: 10.7498/aps.73.20231652
    [3] 高越, 余博丞, 郭瑞, 曹燕燕, 徐亚东. 基于相位梯度超构光栅的光学超构笼子.  , 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [5] 周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗. 基于视觉密码与QR码的光学脆弱水印.  , 2021, 70(24): 244201. doi: 10.7498/aps.70.20210964
    [6] 于韬, 杨栋宇, 马锐, 祝玉鹏, 史祎诗. 基于增强型视觉密码的光学信息隐藏系统.  , 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [7] 王仁德, 张亚萍, 祝旭锋, 王帆, 李重光, 张永安, 许蔚. 基于光学扫描全息密码术的多图像并行加密.  , 2019, 68(11): 114202. doi: 10.7498/aps.68.20190162
    [8] 安雪碧, 银振强, 韩正甫. 光学体系宏观-微观纠缠及其在量子密钥分配中的应用.  , 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [9] 于斌, 李恒, 陈丹妮, 牛憨笨. 用于大景深三维纳米分辨多分子追踪的衍射光学元件的设计制备和实验研究.  , 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [10] 李霞, 张镭. 基于后向轨迹追踪模式分析SACOL气溶胶来源及其光学特性.  , 2012, 61(2): 023402. doi: 10.7498/aps.61.023402
    [11] 范德胜, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇. 基于相移干涉术的光学信息隐藏系统的软件实现.  , 2012, 61(24): 244204. doi: 10.7498/aps.61.244204
    [12] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响.  , 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [13] 王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪. 一种高效量子密钥分发系统主动相位补偿方法.  , 2010, 59(1): 281-286. doi: 10.7498/aps.59.281
    [14] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [15] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿.  , 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] 赵 峰, 路轶群, 王发强, 陈 霞, 李明明, 郭邦红, 廖常俊, 刘颂豪. 基于微弱相干脉冲稳定差分相位量子密钥分发.  , 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [17] 林青群, 王发强, 米景隆, 梁瑞生, 刘颂豪. 基于随机相位编码的确定性量子密钥分配.  , 2007, 56(10): 5796-5801. doi: 10.7498/aps.56.5796
    [18] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [19] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统.  , 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [20] 苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿. 相位调制自由空间量子密钥分配.  , 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
计量
  • 文章访问数:  1070
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-29
  • 修回日期:  2024-05-15
  • 上网日期:  2024-06-18
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map