搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉密码与QR码的光学脆弱水印

周新隆 祝玉鹏 杨栋宇 张峻浩 卢哲 王华英 董昭 柯常军 史祎诗

引用本文:
Citation:

基于视觉密码与QR码的光学脆弱水印

周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗

Optical fragile watermarking based on visual cryptography and QR code

Zhou Xin-Long, Zhu Yu-Peng, Yang Dong-Yu, Zhang Jun-Hao, Lu Zhe, Wang Hua-Ying, Dong Zhao, Ke Chang-Jun, Shi Yi-Shi
PDF
HTML
导出引用
  • 提出了一种基于视觉密码与QR码的图像认证和篡改检测的光学脆弱水印方法. 一方面, 将原始水印图像变换为QR码水印图像, 以提高水印隐藏容量. 另一方面, 将视觉密码与光学相位编码相融合来加密水印图像, 以增强系统安全性. 通过一系列的攻击与篡改测试了所提水印方法的可行性、脆弱性和不可感知性. 模拟结果表明, 所提水印方法不仅具有较好的不可感知性, 而且在任意攻击下都能灵敏地检测出图像发生了篡改, 具有很强的脆弱性.
    An optical fragile watermarking method is proposed based on visual cryptography and QR code for image authentication and tamper detection. On the one hand, the original image is transformed into a QR watermark image to improve the watermark hiding capacity. On the other hand, the visual cryptography and optical phase coding are fused to encrypt the watermark image to enhance system security. The feasibility, vulnerability and imperceptibility of the proposed scheme are tested through a series of attacks and tampering. The simulation results show that the proposed method can not only have good imperceptibility, but also achieve high detection performance under different attacks and tampering.
      通信作者: 史祎诗, sysopt@126.com
    • 基金项目: 国家自然科学基金(批准号: 62131011)、中国科学院科教融合项目、中国科学院青年创新促进会(批准号: 2017489)、中国科学院大学优秀青年教师科研能力提升项目、中央高校基本科研业务费专项资金(批准号: E1E46201X2)和河北省自然科学基金重点项目(批准号: F2018402285)和河北省京津冀协同创新共同体建设专项(批准号: 20540302D)资助的课题.
      Corresponding author: Shi Yi-Shi, sysopt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62131011), the Fusion Foundation of Research and Education of the Chinese Academy of Sciences, China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, China (Grant No. 2017489), the Scientific Research Capability Improvement Project for Outstanding Young Teachers of University of Chinese Academy of Sciences, China, the Fundamental Research Fund for the Central Universities, China (Grant No. E1E46201X2), the Key Program of the Natural Science Foundation of Hebei Province, China (Grant No. F2018402285), the Project of Hebei Province Innovation Capability Improvement Plan, China (Grant No. 20540302D).
    [1]

    Thanki, Rohit 2021 Int. J. Digit. Crime Forensics 13 35Google Scholar

    [2]

    余朔望 2013 中国信息化 8 204

    Yu S W 2013 iChina 8 204

    [3]

    Bravo-Solorio S, Nandi A K 2011 Signal Process. 91 728Google Scholar

    [4]

    Chen Z Y 2013 Signal Process. Image Commun. 28 301Google Scholar

    [5]

    郑秋梅, 刘楠 2020 计算机科学 47 332Google Scholar

    Zheng Q M, Liu N 2020 Comput. Sci. 47 332Google Scholar

    [6]

    Ruan T, Yang D, Shi Y 2021 Appl. Opt. 60 3071Google Scholar

    [7]

    Shi Y, Li T, Wang Y, Gao Q, Zhang S, Li H 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 23 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 23 234201Google Scholar

    [9]

    Xu W H, Xu H F, Luo Y, Li T 2016 Opt. Express 24 27922Google Scholar

    [10]

    Li C, Wang Y, Ma B, Zhang Z 2012 Comput. Stand. Interfaces 34 367Google Scholar

    [11]

    Shi Y S, Yang X 2017 J. Opt. 19 115703Google Scholar

    [12]

    曾高荣, 裘正定 2010 59 5870Google Scholar

    Zeng G R, Qiu Z D 2010 Acta Phys. Sin 59 5870Google Scholar

    [13]

    Ma R, Li Y, Jia H Z, Shi Y S, Xie X D, Huang T J 2021 Opt. Lasers Eng. 141 106569Google Scholar

    [14]

    Zhu Y P, Xu W H, Shi Y S 2019 Opt. Commun. 435 426Google Scholar

    [15]

    Lv W J, Sun X K, Yang D Y, Zhu Y P, Tao Y, Shi Y S 2021 Opt. Lasers Eng. 141 106574Google Scholar

    [16]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin 69 144202Google Scholar

    [17]

    Yang N, GAO Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [18]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [19]

    Sun X K, Zhang S G, Ma R, Tao Y, Zhu Y P, Yang D Y, Shi Y S 2020 Opt. Express 28 31832Google Scholar

    [20]

    Jiao S M, Zhou C Y, Shi Y S, Zou W B, Li X 2019 Opt. Laser Technol. 109 370Google Scholar

    [21]

    Xu R Q, Lv P, Xu F J, Shi Y S 2021 Opt. Laser Technol. 136 106787Google Scholar

    [22]

    Refregier P, Bahram B 1995 Opt. Lett. 20 767Google Scholar

    [23]

    Kishk S, Javidi B 2002 Appl. Opt. 41 5462Google Scholar

  • 图 1  光学水印生成与嵌入过程

    Fig. 1.  Optical watermark generation and embedding process. (I) is the process of transforming the original image into a QR code and encoding it through visual-cryptographic (VC denotes visual- cryptography encoding). (II) is the process of optical phase encryption. (III) is the embedding process of watermark.

    图 2  原始水印图像提取过程

    Fig. 2.  Optical watermark embedding and extraction process.

    图 3  未受到任何攻击与篡改的水印提取结果 (a) 宿主图像; (b)原始水印图像; (c)由原始水印图像生成的QR码水印图像; (d) 嵌入水印后的图像; (e) 无任何攻击和篡改, 且使用正确密钥提取出来的水印图像; (f)腐蚀膨胀处理后的QR码水印图像; (g)使用移动设备扫描得到的原始水印图像

    Fig. 3.  Watermark extraction results without any attack and tampering: (a) Host image; (b) original watermark image; (c) QR code watermark image generated from original watermark image; (d) watermarked image; (e) watermark image without any attack or tampering, and using the correct key to extract the watermark; (f) QR code watermark image after corrosion expansion; (g) original watermark image scanned by mobile device.

    图 4  (a)—(c)woman, panda, baboo宿主图像; (d)—(f)对应的含水印图像

    Fig. 4.  (a) Host image of woman; (b) host image of panda; (c) host image of baboo; (d) watermarked image of woman; (e) watermarked image of panda; (f) watermarked image of baboo.

    图 5  含水印图像与对应宿主图像之间的相关系数

    Fig. 5.  Correlation coefficient between watermarked images and corresponding host images.

    图 6  含水印图像质量随衰减系数$ \alpha $的变化曲线

    Fig. 6.  PSNR of the watermarked images for different α.

    图 7  水印恢复质量随衰减系数的变化曲线

    Fig. 7.  PSNR of the recovered images for different $ \alpha $.

    图 8  复制粘贴篡改后水印提取结果 (a) 宿主图像; (b)水印图像; (c)嵌入水印后的图像; (d) 篡改后的图像; (e) 篡改后的水印提取结果

    Fig. 8.  Result of watermark extraction after copying and pasting: (a) Host image; (b) watermark image; (c) watermarked image; (d) tampered image; (e) result of watermark extraction.

    图 9  文本添加篡改后水印提取结果 (a) 宿主图像; (b)水印图像; (c)嵌入水印后的图像; (d) 篡改后的图像; (e) 篡改后的水印提取结果

    Fig. 9.  Result of watermark extraction after the text is added in watermarked image: (a) Host image; (b) watermark image; (c) watermarked image; (d) tampered image; (e) result of watermark extraction.

    图 10  常见攻击下的水印提取结果 (a)−(c)高斯噪声攻击、椒盐噪声攻击、斑点噪声攻击; (d)−(h)剪切、旋转、运动模糊、JPEG压缩、高斯低通滤波

    Fig. 10.  Results of common attacks for watermarked images: (a)−(c) Gaussian noise attack, salt and pepper noise attack, speckle noise attack; (d)−(h) shear, rotation, motion blur, JPEG compression, gaussian low pass filtering.

    Baidu
  • [1]

    Thanki, Rohit 2021 Int. J. Digit. Crime Forensics 13 35Google Scholar

    [2]

    余朔望 2013 中国信息化 8 204

    Yu S W 2013 iChina 8 204

    [3]

    Bravo-Solorio S, Nandi A K 2011 Signal Process. 91 728Google Scholar

    [4]

    Chen Z Y 2013 Signal Process. Image Commun. 28 301Google Scholar

    [5]

    郑秋梅, 刘楠 2020 计算机科学 47 332Google Scholar

    Zheng Q M, Liu N 2020 Comput. Sci. 47 332Google Scholar

    [6]

    Ruan T, Yang D, Shi Y 2021 Appl. Opt. 60 3071Google Scholar

    [7]

    Shi Y, Li T, Wang Y, Gao Q, Zhang S, Li H 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 23 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 23 234201Google Scholar

    [9]

    Xu W H, Xu H F, Luo Y, Li T 2016 Opt. Express 24 27922Google Scholar

    [10]

    Li C, Wang Y, Ma B, Zhang Z 2012 Comput. Stand. Interfaces 34 367Google Scholar

    [11]

    Shi Y S, Yang X 2017 J. Opt. 19 115703Google Scholar

    [12]

    曾高荣, 裘正定 2010 59 5870Google Scholar

    Zeng G R, Qiu Z D 2010 Acta Phys. Sin 59 5870Google Scholar

    [13]

    Ma R, Li Y, Jia H Z, Shi Y S, Xie X D, Huang T J 2021 Opt. Lasers Eng. 141 106569Google Scholar

    [14]

    Zhu Y P, Xu W H, Shi Y S 2019 Opt. Commun. 435 426Google Scholar

    [15]

    Lv W J, Sun X K, Yang D Y, Zhu Y P, Tao Y, Shi Y S 2021 Opt. Lasers Eng. 141 106574Google Scholar

    [16]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin 69 144202Google Scholar

    [17]

    Yang N, GAO Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [18]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [19]

    Sun X K, Zhang S G, Ma R, Tao Y, Zhu Y P, Yang D Y, Shi Y S 2020 Opt. Express 28 31832Google Scholar

    [20]

    Jiao S M, Zhou C Y, Shi Y S, Zou W B, Li X 2019 Opt. Laser Technol. 109 370Google Scholar

    [21]

    Xu R Q, Lv P, Xu F J, Shi Y S 2021 Opt. Laser Technol. 136 106787Google Scholar

    [22]

    Refregier P, Bahram B 1995 Opt. Lett. 20 767Google Scholar

    [23]

    Kishk S, Javidi B 2002 Appl. Opt. 41 5462Google Scholar

计量
  • 文章访问数:  4887
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2021-07-11
  • 上网日期:  2021-08-25
  • 刊出日期:  2021-12-20

/

返回文章
返回
Baidu
map