搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化

程怡婷 AndreyS. Makarov GennadiiV. Afonin VitalyA. Khonik 乔吉超

引用本文:
Citation:

基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化

程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超

Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data

Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao
PDF
HTML
导出引用
  • 非晶合金具有独特物理和力学性能, 如何建立非晶合金微观结构非均匀性与物理/力学性能之间的关联是非晶固体的重要研究课题之一. 微合金化是调控非晶合金微观结构有效手段之一. 本研究以玻璃形成能力优异的Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金为模型合金, 借助差示扫描量热仪和电磁声转换设备, 研究非晶合金铸态、弛豫态和结晶态热流和剪切模量随温度的演化规律, 以及物理时效(低于玻璃转变温度)过程剪切模量的变化随时间演化规律. 基于自间隙原子理论, 利用热流曲线表征非晶合金在相同热历史剪切模量热效应. 通过分析铸态和弛豫态自间隙缺陷浓度和激活能谱, 发现结构弛豫导致自间隙缺陷浓度减小, 诱导剪切模量随温度演化偏离软化过程, 并伴随体系放热. 与此同时, 研究发现添加微量Pd元素可抑制模型合金体系原子迁移, 增加特征弛豫时间. 本研究从非晶合金模量热效应角度进一步理解非晶合金微观结构非均匀性.
    Amorphous alloys exhibit unique physical and mechanical properties, which are closely connected with their microstructural heterogeneity. The correlation between structural heterogeneity and mechanical properties is one of the important issues of amorphous alloys. Micro-alloying is an effective way to tune the mechanical and physical properties of amorphous alloys. In the present study, Zr50–xCu34Ag8Al8Pdx (x = 0 and 2) amorphous alloys with ability to form excellent glass are chosen as model alloys. The evolutions of heat flow and shear modulus in different states (as-cast, relaxed and crystalline) with temperature of Zr50–xCu34Ag8Al8Pdx (x = 0 and 2) glass system are studied by differential scanning calorimetry (DSC) and electromagnetic-acoustic transformation (EMAT) technique, respectively. The experiment demonstrates that a decrease of the shear modulus is accompanied by the endothermic heat flow and vice versa. The correlation between the heat flow and shear modulus is investigated according to the interstitialcy theory. The calculations of the interstitialcy defect concentration and activation energy spectra suggest that the microstructure remains stable at relatively low temperatures. When temperature increases, the interstitialcy defect structure is activated. Compared with that in the as-cast state, the interstitialcy defect concentration in the relaxed state is reduced by structural relaxation, indicating that temperature-dependent shear modulus softening is inhibited. At temperatures above glass transition temperature, a rapid growth of interstitialcy defect concentration results in the accelerated shear softening, which is accompanied by significant endothermic heat flow. It is noted that the minor addition of palladium reduces the interstitialcy defect concentration in the Zr50–xCu34Ag8Al8Pdx (x = 0 and 2) metallic glass systems. It is suggested that the introduction of Pd reduces the atomic mobility and increases the characteristic relaxation time. In parallel, the change of shear modulus as a function of the aging time (below the glass transition temperature) is studied by using EMAT equipment. The results indicate that the interstitialcy defect concentration decreases in the physical aging process, which is accompanied by an increase of shear modulus. The interstitialcy defect concentration and shear modulus change towards the quasi-equilibrium state with aging time increasing. A reduction of the interstitialcy defect concentration leads to a decrease of the shear modulus change upon microalloying by Pd into Zr50–x Cu34Ag8Al8Pdx (x = 0 and 2) metallic glass system.
      通信作者: 乔吉超, qjczy@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51971178)、陕西省自然科学基础研究计划(批准号: 2019JM-344)和俄罗斯科学基金会(批准号: 20-62-46003)资助的课题
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51971178), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-344), and the Russian Science Foundation (Grant No. 20-62-46003)
    [1]

    Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar

    [2]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [3]

    Torquato S 2000 Nature 405 521Google Scholar

    [4]

    王军强, 欧阳酥 2017 66 176102Google Scholar

    Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102Google Scholar

    [5]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater Sci. 104 250Google Scholar

    [6]

    Wang W H 2012 Prog. Mater Sci. 57 487Google Scholar

    [7]

    王峥, 汪卫华 2017 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [8]

    Perez J 1988 Polymer 29 483Google Scholar

    [9]

    Perez J 1990 Solid State Ion. 39 69Google Scholar

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Dyre, J C 2008 Rev. Mod. Phys. 78 953

    [12]

    Makarov A S, Khonik V A, Mitrofanov Y P, Granato A V, Joncich D M, Khonik S V 2013 Appl. Phys. Lett. 102 091908Google Scholar

    [13]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [14]

    Kobelev N P, Khonik V A 2015 J. Non-Cryst. Solids 427 184Google Scholar

    [15]

    Khonik V A 2015 Metals 5 504Google Scholar

    [16]

    Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L 2006 Phys. Rev. Lett. 97 065502Google Scholar

    [17]

    Granato A V 1992 Phys. Rev. Lett. 68 974Google Scholar

    [18]

    Granato A V 2014 Eur. Phys. J. B 87 18Google Scholar

    [19]

    Khonik V A 2017 Chin. Phys. B 26 016401Google Scholar

    [20]

    Makarov A S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2019 Scripta Mater. 168 10Google Scholar

    [21]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V A 2020 Chin. Phys. B 29 86402Google Scholar

    [22]

    Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V, Khonik V A 2020 J. Alloys Compd. 830 154564Google Scholar

    [23]

    Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bednarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z 2008 Acta Mater. 56 1785Google Scholar

    [24]

    Afonin G V, Mitrofanov Y P, Makarov A S, Kobelev N P, Wang W H, Khonik V A 2016 Acta Mater. 115 204Google Scholar

    [25]

    张浪渟, Khonik V A, 乔吉超 2020 力学学报 52 1709Google Scholar

    Zhang L T, Khonik V A, Qiao J C 2020 Chin. J Theor. Appl. Mech. 52 1709Google Scholar

    [26]

    Cheng Y T, Hao Q, Qiao J C, Crespo D, Pineda E, Pelletier J M 2021 J. Non-Cryst. Solids 553 120496Google Scholar

    [27]

    Vasilev A N, Gaidukov Y P 1983 Uspekhi Fizicheskikh Nauk 141 431Google Scholar

    [28]

    Zhang W, Zhang Q, Inoue A 2008 Adv. Eng. Mater. 10 1034Google Scholar

    [29]

    Makarov S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2017 Intermetallics 87 1Google Scholar

    [30]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [31]

    Khonik S V, Granato A V, Joncich D M, Pompe A, Khonik V A 2008 Phys. Rev. Lett. 100 065501Google Scholar

    [32]

    Ma E 2015 Nat. Mater. 14 547Google Scholar

    [33]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [34]

    Shen J, Huang Y J, Sun J F 2007 J. Mater. Res. 22 3067Google Scholar

    [35]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

    [36]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440Google Scholar

    [37]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [38]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [39]

    Qiao J C, Yao Y, Pelletier J M, Keer L M 2016 Int. J. Plast. 82 62Google Scholar

  • 图 1  (a) Zr50Cu34Ag8Al8和(b)Zr48Cu34Ag8Al8Pd2非晶合金DSC曲线. Run1为由室温升温至715 K的过程, Run2为室温升温至823 K的过程, Run3为室温升温至823 K的过程. 升温速率为3 K/min; (c) Zr50–xCu34Ag8Al8Pdx(x = 0, 2)非晶合金铸态DSC曲线; (d)升温过程示意图

    Fig. 1.  (a) DSC curves of Zr50Cu34Ag8Al8 and (b) Zr48Cu34Ag8Al8Pd2 metallic glasses. Run1, Run2 and Run3 correspond to heating from room temperature up to 715 K, 823 K and 823 K, respectively; (c) DSC curves of Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses (as-cast state) on an enlarged scale; (d) schematic diagram of heating process.

    图 2  (a) Zr50Cu34Ag8Al8和(b) Zr48Cu34Ag8Al8Pd2非晶合金剪切模量在3次升温过程中随温度演化过程

    Fig. 2.  Evolution of the shear modulus with temperature during three subsequent heating runs of (a) Zr50Cu34Ag8Al8 and (b) Zr48Cu34Ag8Al8Pd2 metallic glasses.

    图 3  Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金的(a)铸态和弛豫态自间隙缺陷浓度以及(b)自间隙缺陷浓度随温度的变化率(${{{\rm{d}}c(T)} / {{\rm{d}}T}}$)随温度的演化

    Fig. 3.  (a) Evolution of the defect concentration in the as-cast and relaxed samples and (b) the rate of defect concentration change (${{{\rm{d}}c(T)} / {{\rm{d}}T}}$) as a function of temperature for Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses.

    图 4  Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金的激活能谱

    Fig. 4.  Activation energy spectra for Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses.

    图 5  物理时效过程中Zr50–xCu34Ag8Al8Pdx(x = 0, 2)非晶合金剪切模量的变化$g(T)$和自间隙缺陷浓度随物理时效时间的演化过程.

    Fig. 5.  Сhange of the shear modulus $g(T)$ and defect concentration with the aging time for Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses

    Baidu
  • [1]

    Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar

    [2]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [3]

    Torquato S 2000 Nature 405 521Google Scholar

    [4]

    王军强, 欧阳酥 2017 66 176102Google Scholar

    Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102Google Scholar

    [5]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater Sci. 104 250Google Scholar

    [6]

    Wang W H 2012 Prog. Mater Sci. 57 487Google Scholar

    [7]

    王峥, 汪卫华 2017 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [8]

    Perez J 1988 Polymer 29 483Google Scholar

    [9]

    Perez J 1990 Solid State Ion. 39 69Google Scholar

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Dyre, J C 2008 Rev. Mod. Phys. 78 953

    [12]

    Makarov A S, Khonik V A, Mitrofanov Y P, Granato A V, Joncich D M, Khonik S V 2013 Appl. Phys. Lett. 102 091908Google Scholar

    [13]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [14]

    Kobelev N P, Khonik V A 2015 J. Non-Cryst. Solids 427 184Google Scholar

    [15]

    Khonik V A 2015 Metals 5 504Google Scholar

    [16]

    Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L 2006 Phys. Rev. Lett. 97 065502Google Scholar

    [17]

    Granato A V 1992 Phys. Rev. Lett. 68 974Google Scholar

    [18]

    Granato A V 2014 Eur. Phys. J. B 87 18Google Scholar

    [19]

    Khonik V A 2017 Chin. Phys. B 26 016401Google Scholar

    [20]

    Makarov A S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2019 Scripta Mater. 168 10Google Scholar

    [21]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V A 2020 Chin. Phys. B 29 86402Google Scholar

    [22]

    Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V, Khonik V A 2020 J. Alloys Compd. 830 154564Google Scholar

    [23]

    Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bednarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z 2008 Acta Mater. 56 1785Google Scholar

    [24]

    Afonin G V, Mitrofanov Y P, Makarov A S, Kobelev N P, Wang W H, Khonik V A 2016 Acta Mater. 115 204Google Scholar

    [25]

    张浪渟, Khonik V A, 乔吉超 2020 力学学报 52 1709Google Scholar

    Zhang L T, Khonik V A, Qiao J C 2020 Chin. J Theor. Appl. Mech. 52 1709Google Scholar

    [26]

    Cheng Y T, Hao Q, Qiao J C, Crespo D, Pineda E, Pelletier J M 2021 J. Non-Cryst. Solids 553 120496Google Scholar

    [27]

    Vasilev A N, Gaidukov Y P 1983 Uspekhi Fizicheskikh Nauk 141 431Google Scholar

    [28]

    Zhang W, Zhang Q, Inoue A 2008 Adv. Eng. Mater. 10 1034Google Scholar

    [29]

    Makarov S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2017 Intermetallics 87 1Google Scholar

    [30]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [31]

    Khonik S V, Granato A V, Joncich D M, Pompe A, Khonik V A 2008 Phys. Rev. Lett. 100 065501Google Scholar

    [32]

    Ma E 2015 Nat. Mater. 14 547Google Scholar

    [33]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [34]

    Shen J, Huang Y J, Sun J F 2007 J. Mater. Res. 22 3067Google Scholar

    [35]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

    [36]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440Google Scholar

    [37]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [38]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [39]

    Qiao J C, Yao Y, Pelletier J M, Keer L M 2016 Int. J. Plast. 82 62Google Scholar

  • [1] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律.  , 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性.  , 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [4] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛.  , 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响.  , 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [6] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响.  , 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [7] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究.  , 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [9] 柳延辉. 非晶合金的高通量制备与表征.  , 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [10] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体.  , 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [11] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状.  , 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [12] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [13] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀.  , 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [14] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂.  , 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [15] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [16] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [17] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化.  , 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究.  , 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [19] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [20] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量.  , 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
计量
  • 文章访问数:  5021
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-02-26
  • 上网日期:  2021-07-15
  • 刊出日期:  2021-07-20

/

返回文章
返回
Baidu
map