搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软X射线条纹相机CsI光阴极响应灵敏度的理论计算

何小安 杨家敏 黎宇坤 李晋 熊刚

引用本文:
Citation:

软X射线条纹相机CsI光阴极响应灵敏度的理论计算

何小安, 杨家敏, 黎宇坤, 李晋, 熊刚

Theoretical calculation of response sensitivity of CsI photocathode of soft X-ray streak camera

He Xiao-An, Yang Jia-Min, Li Yu-Kun, Li Jin, Xiong Gang
PDF
HTML
导出引用
  • 碘化铯(CsI)光阴极响应灵敏度是软X射线条纹相机用于X射线能谱定量诊断的重要参数, 其理论计算具有重要指导意义. 目前的理论解析模型基于薄膜光阴极产生次级电子的一维随机行走模型发展而来, 具体包括X射线正入射、能量大于1 keV条件下的Henke模型, 以及变角度入射、光阴极厚度大于100 nm条件下的Fraser模型, 都存在一定局限性. 本文进一步引入次级电子输运概率的基础表达式, 推导了CsI光阴极在更大参数范围内(X射线能量0.1—10 keV、光阴极厚度10—200 nm)响应灵敏度随X射线能量E、光阴极厚度t、X射线与阴极表面夹角θ变化的一般表达式. 最后, 将本文的理论计算结果与Henke模型、Fraser模型、文献及北京同步辐射的实验数据分别进行了比较和讨论分析, 验证了计算模型的准确性和普适性, 并且为高时间分辨光谱定量测量实验中CsI光阴极的优化设计提供了理论参考.
    The response sensitivity of CsI photocathode is an important parameter for the quantitative diagnosis of X-ray spectroscopy by soft X-ray streak camera, and its theoretical calculation has important guiding significance. The current theoretical analytical models are based on the one-dimensional random walking model of secondary electrons generated by thin film photocathodes, including the Henke model under the condition of normal incidence of X-rays and energy greater than 1 keV, and the Fraser model under variable angle incidence and photocathode thickness greater than 100 nm, which have certain limitations. In this paper, the basic expression of the probability of secondary electron transmission is introduced, and the general expression of the response sensitivity of CsI photocathode is deduced, which varies with X-ray energy E, photocathode thickness t, and angle θ between X-ray and cathode surface in a larger parameter range (X-ray energy 0.1–10 keV, photocathode thickness 10–200 nm). Finally, the theoretical calculation results of this paper are discussed by comparing it with those from the Henke model, Fraser model, literature data and experimental data on Beijing synchrotron radiation facility, which verifies the accuracy and universality of the computational model, and a theoretical reference is provided for optimally designing the CsI photocathode in high-time-resolution spectrometric quantitative measurement.
      通信作者: 杨家敏, yjm70018@sina.cn
    • 基金项目: 国家自然科学基金(批准号: 11735013)、国家重点研发计划(批准号: 2017YFA0403200)和中国工程物理研究院院长基金(批准号: YZJJLX2017010)资助的课题.
      Corresponding author: Yang Jia-Min, yjm70018@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11734013), the National Key R&D Program of China (Grant No. 2017YFA0403200), and the Presidential Fund of China Academy of Engineering Physics, China (Grant No. YZJJLX2017010).
    [1]

    Regan S P, Delettrez J A, Epstein R, Jaanimagi P A, Yaakobi B 2002 Phys. Plasmas 9 041357Google Scholar

    [2]

    Baumgaertel J A, Bradley P A, Hsu S C, Cobble J A, Hakel P 2014 Phys. Plasmas 21 052706Google Scholar

    [3]

    Chen H, Ma T, Nora R, Barrios M A, Scott H A 2017 Phys. Plasmas 24 072715Google Scholar

    [4]

    胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 56 1447Google Scholar

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar

    [5]

    Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W, Suter L J 1994 Phys. Rev. 73 172324Google Scholar

    [6]

    乔秀梅, 郑无敌, 高耀明 2015 64 045201Google Scholar

    Qiao X M, Zheng W D, Gao Y M 2015 Acta Phys. Sin. 64 045201Google Scholar

    [7]

    Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 031509Google Scholar

    [8]

    曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 61 155209Google Scholar

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209Google Scholar

    [9]

    李晋, 胡昕, 樊龙, 陈韬, 杨志文, 邓博, 黎宇坤, 曹柱荣, 刘慎业 2015 强激光与粒子束 27 082003Google Scholar

    Li J, Hu X, Fan L, Chen T, Yang Z W, Deng B, Li Y K, Cao Z R, Liu S Y 2015 High Power Laser and Particle Beams 27 082003Google Scholar

    [10]

    Fraser G W 1983 Nucl. Instrum. Meth. Phys. Res. 206 251Google Scholar

    [11]

    Fraser G W 1985 Nucl. Instrum. Meth. Phys. Res. 228 532Google Scholar

    [12]

    Lowney D P, Heimann P A, Padmore H A 2004 Rev. Sci. Instrum. 75 103131Google Scholar

    [13]

    黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣 2018 67 085203Google Scholar

    Li Y K, Chen T, Li J, Yang Z W, Hu X, Deng K L, Cao Z R 2018 Acta Phys. Sin. 67 085203Google Scholar

    [14]

    Akkerman A, Gibrekherman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429Google Scholar

    [15]

    Gibrekhterman A, Akkerman A, Breskin A, Chechik R 1993 J. Appl. Phys. 74 7506Google Scholar

    [16]

    Kimbrough J R, Bell P M, Christianson G B 2001 Rev. Sci. Instrum. 72 748Google Scholar

    [17]

    Kane E O 1966 Phys. Rev. 147 335Google Scholar

    [18]

    Boutboul T, Akkerman A, Gibrekhterman A, Breskin A, Chechikb R 1999 J. Appl. Phys. 86 155841Google Scholar

    [19]

    赵凯华, 钟锡华 1982 光学 (北京: 北京大学出版社) 第247页

    Zhao K H, Zhong X H 1982 Optics (Beijing: Peking University Press) p247

    [20]

    黎宇坤, 陈韬, 邓博, 袁铮, 曹柱荣 2014 强激光与粒子束 26 022002Google Scholar

    Li Y K, Chen T, Deng B, Yuan Z, Cao Z R 2014 High Power Laser and Particle Beams 26 022002Google Scholar

  • 图 1  CsI薄膜光阴极次级电子产生、输运和逸出过程示意图

    Fig. 1.  Schematic diagram for generation, transmission and escape of secondary electrons from CsI photocathode.

    图 2  不同能量 X 射线正入射时, 不同模型计算的 CsI 响应灵敏度随厚度的变化 (a) X 射线能量为 193 eV; (b) X射线能量为 525 eV; (c) X 射线能量为 2300 eV

    Fig. 2.  Under normal incidence of X-rays with different energy, computed CsI response sensitivity as a function of thickness based on different models: (a) X-ray energy of 193 eV; (b) X-ray energy of 525 eV; (c) X-ray energy of 2300 eV.

    图 3  100, 500, 1000 eV的X射线入射时, 不同模型计算的100 nm厚度CsI响应灵敏度随阴极表面夹角的变化

    Fig. 3.  Comparison of computed 100 nm CsI response sensitivity as a function of angle based on different models at X-ray incidence of 100, 500 and 1000 eV.

    图 4  CsI光阴极在北京同步辐射的实验标定结果与本文模型计算结果比较

    Fig. 4.  Comparison of experimental calibration results of CsI photocathode in Beijing synchrotron radiation with the calculation results of this model.

    图 5  三种不同厚度CsI光阴极的响应灵敏度随X射线能量的变化

    Fig. 5.  Response sensitivity of CsI photocathodes with three different thicknesses as a function of X-ray energy.

    Baidu
  • [1]

    Regan S P, Delettrez J A, Epstein R, Jaanimagi P A, Yaakobi B 2002 Phys. Plasmas 9 041357Google Scholar

    [2]

    Baumgaertel J A, Bradley P A, Hsu S C, Cobble J A, Hakel P 2014 Phys. Plasmas 21 052706Google Scholar

    [3]

    Chen H, Ma T, Nora R, Barrios M A, Scott H A 2017 Phys. Plasmas 24 072715Google Scholar

    [4]

    胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 56 1447Google Scholar

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar

    [5]

    Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W, Suter L J 1994 Phys. Rev. 73 172324Google Scholar

    [6]

    乔秀梅, 郑无敌, 高耀明 2015 64 045201Google Scholar

    Qiao X M, Zheng W D, Gao Y M 2015 Acta Phys. Sin. 64 045201Google Scholar

    [7]

    Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 031509Google Scholar

    [8]

    曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 61 155209Google Scholar

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209Google Scholar

    [9]

    李晋, 胡昕, 樊龙, 陈韬, 杨志文, 邓博, 黎宇坤, 曹柱荣, 刘慎业 2015 强激光与粒子束 27 082003Google Scholar

    Li J, Hu X, Fan L, Chen T, Yang Z W, Deng B, Li Y K, Cao Z R, Liu S Y 2015 High Power Laser and Particle Beams 27 082003Google Scholar

    [10]

    Fraser G W 1983 Nucl. Instrum. Meth. Phys. Res. 206 251Google Scholar

    [11]

    Fraser G W 1985 Nucl. Instrum. Meth. Phys. Res. 228 532Google Scholar

    [12]

    Lowney D P, Heimann P A, Padmore H A 2004 Rev. Sci. Instrum. 75 103131Google Scholar

    [13]

    黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣 2018 67 085203Google Scholar

    Li Y K, Chen T, Li J, Yang Z W, Hu X, Deng K L, Cao Z R 2018 Acta Phys. Sin. 67 085203Google Scholar

    [14]

    Akkerman A, Gibrekherman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429Google Scholar

    [15]

    Gibrekhterman A, Akkerman A, Breskin A, Chechik R 1993 J. Appl. Phys. 74 7506Google Scholar

    [16]

    Kimbrough J R, Bell P M, Christianson G B 2001 Rev. Sci. Instrum. 72 748Google Scholar

    [17]

    Kane E O 1966 Phys. Rev. 147 335Google Scholar

    [18]

    Boutboul T, Akkerman A, Gibrekhterman A, Breskin A, Chechikb R 1999 J. Appl. Phys. 86 155841Google Scholar

    [19]

    赵凯华, 钟锡华 1982 光学 (北京: 北京大学出版社) 第247页

    Zhao K H, Zhong X H 1982 Optics (Beijing: Peking University Press) p247

    [20]

    黎宇坤, 陈韬, 邓博, 袁铮, 曹柱荣 2014 强激光与粒子束 26 022002Google Scholar

    Li Y K, Chen T, Deng B, Yuan Z, Cao Z R 2014 High Power Laser and Particle Beams 26 022002Google Scholar

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线.  , 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线.  , 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [4] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究.  , 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [5] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统.  , 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [6] 黎宇坤, 董建军, 陈韬, 宋仔锋, 王强强, 邓克立, 邓博, 曹柱荣, 王峰. 对钙钛矿CsPbX3的X光波段外光电效应的研究.  , 2021, 70(19): 197901. doi: 10.7498/aps.70.20210651
    [7] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计.  , 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [8] 黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣. CsI光阴极在10100 keV X射线能区的响应灵敏度计算.  , 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [9] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性.  , 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 周贤明, 肖国青. 不同电荷态的129Xeq+激发Au的X射线发射研究.  , 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [11] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 不同动能的129Xe26+与Au表面作用产生的X射线谱.  , 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [12] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射.  , 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [13] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱.  , 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [14] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定.  , 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [15] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱.  , 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制.  , 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] 李敏, 尼启良, 陈波. 极端紫外波段碱卤化物光阴极材料量子效率计算.  , 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [18] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法.  , 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱.  , 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
计量
  • 文章访问数:  1869
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 修回日期:  2023-09-14
  • 上网日期:  2023-10-08
  • 刊出日期:  2023-12-20

/

返回文章
返回
Baidu
map