搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层与双层石墨烯的光学吸收性质研究

陈英良 冯小波 侯德东

引用本文:
Citation:

单层与双层石墨烯的光学吸收性质研究

陈英良, 冯小波, 侯德东

Optical absorptions in monolayer and bilayer graphene

Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong
PDF
导出引用
  • 采用紧束缚模型分别描述单层、双层石墨烯的能带结构, 利用光子-电子相互作用的二阶微扰理论分别计算单光子和双光子吸收系数.计算结果表明: 单层石墨烯单光子吸收系数为常数, 约为6.8×107 m-1, 即单层石墨烯对入射光的吸收率约为2.3%; 双层石墨烯的单光子吸收比单层石墨烯的单光子吸收强, 且随入射光波长呈分段性变化.单层石墨烯的双光子吸收系数与波长λ4成正比; 双层石墨烯双光子吸收系数在红外波段(~ 3100 nm处)有一个很强的共振吸收峰. 研究结果可为石墨烯材料在光电子器件的研究和制作方面提供指导.
    We theoretically simulate one-photon and two-photon absorption spectra for monolayer and bilayer graphene employing the second-order perturbation theory of the electron-photon interaction. The tight-binding model is used to describe the band structure of graphene. The results show that one-photon absorption coefficient of monolayer graphene is a constant about 6.8×107 m-1, demonstrating that the absorptivity of incident light in monolayer graphene approximates to 2.3%. The one-photon absorption coefficient of bilayer graphene changes sectionally with the wavelength and is greater than that of monolayer graphene. The two-photon absorption coefficient of monolayer graphene is proportional to λ4. The two-photon absorption coefficient of bilayer graphene exhibits a giant resonance absorption peak in the infrared (~ 3100 nm) region. Our results will provide theoretical guidance for the application of graphene in the research field of optoelectronic devices.
    • 基金项目: 国家自然科学基金(批准号:11064017)和云南省应用基础研究面上项目(批准号:2010ZC078,2010CD047)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11064017) and the Applied Basic Research General Programs of Yunnan Province, China (Grant Nos. 2010ZC078, 2010CD047).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156]

    [5]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [6]

    Xu X G, Zhang C, Xu G J, Cao J C 2011 Chin. Phys. B 20 027201

    [7]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [8]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平, 徐慧, 魏辰 2008 57 1073]

    [9]

    Toyoda T, Zhang C 2012 Phys. Lett. A 376 616

    [10]

    Min H, Sahu B, Banerjee S K, Mac-Donald A H 2007 Phys. Rev. B 75 155115

    [11]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405

    [12]

    Mucha-Kruczyński M, McCann E, Fal’ko V I 2010 Semicond. Sci. Technol. 25 033001

    [13]

    Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A 2009 Angewandte Chemie International Edition 48 7752

    [14]

    Sarma S D, Shaffique A, Hwang E H, Enrico R 2011 Rev. Mod. Phys. 83 407

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [17]

    Xing G C, Guo H C, Zhang X H, Sum T C, Alfred Huan C H 2010 Opt. Express 18 4564

    [18]

    Fan Y, Jiang Z G, Yao L F 2012 Chin. Opt. Lett. 10 071901

    [19]

    Hendry E, Hale P J, Moger J, Savchenko A K 2010 Phys. Rev. Lett. 105 097401

    [20]

    Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N, Kockaert P 2012 Opt. Lett. 37 1856

    [21]

    Guinea F, Castro Neto A H, Peres N M R 2007 Solid State Commun. 143 116

    [22]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [23]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [24]

    Yang Z, Gao R G, Hu N, Chai J, Cheng Y W, Zhang L Y, Wei H, Kong E S W, Zhang Y F 2012 Nano-Micro Lett. 4 1

    [25]

    Bonaccorso F, Sun Z, Hasan T, Ferrari1 A C 2010 Nature Photon. 4 611

    [26]

    Nathan V, Guenther A H, Mitra S S 1985 J. Opt. Soc. Am. B 2 294

    [27]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [28]

    Koshino M 2013 New J. Phys. 15 015010

    [29]

    McCann E 2006 Phys. Rev. B 74 161403

    [30]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156]

    [5]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [6]

    Xu X G, Zhang C, Xu G J, Cao J C 2011 Chin. Phys. B 20 027201

    [7]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [8]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平, 徐慧, 魏辰 2008 57 1073]

    [9]

    Toyoda T, Zhang C 2012 Phys. Lett. A 376 616

    [10]

    Min H, Sahu B, Banerjee S K, Mac-Donald A H 2007 Phys. Rev. B 75 155115

    [11]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405

    [12]

    Mucha-Kruczyński M, McCann E, Fal’ko V I 2010 Semicond. Sci. Technol. 25 033001

    [13]

    Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A 2009 Angewandte Chemie International Edition 48 7752

    [14]

    Sarma S D, Shaffique A, Hwang E H, Enrico R 2011 Rev. Mod. Phys. 83 407

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [17]

    Xing G C, Guo H C, Zhang X H, Sum T C, Alfred Huan C H 2010 Opt. Express 18 4564

    [18]

    Fan Y, Jiang Z G, Yao L F 2012 Chin. Opt. Lett. 10 071901

    [19]

    Hendry E, Hale P J, Moger J, Savchenko A K 2010 Phys. Rev. Lett. 105 097401

    [20]

    Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N, Kockaert P 2012 Opt. Lett. 37 1856

    [21]

    Guinea F, Castro Neto A H, Peres N M R 2007 Solid State Commun. 143 116

    [22]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [23]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [24]

    Yang Z, Gao R G, Hu N, Chai J, Cheng Y W, Zhang L Y, Wei H, Kong E S W, Zhang Y F 2012 Nano-Micro Lett. 4 1

    [25]

    Bonaccorso F, Sun Z, Hasan T, Ferrari1 A C 2010 Nature Photon. 4 611

    [26]

    Nathan V, Guenther A H, Mitra S S 1985 J. Opt. Soc. Am. B 2 294

    [27]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [28]

    Koshino M 2013 New J. Phys. 15 015010

    [29]

    McCann E 2006 Phys. Rev. B 74 161403

    [30]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110

  • [1] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究.  , 2022, 71(5): 054203. doi: 10.7498/aps.71.20211406
    [2] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211406
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展.  , 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [7] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强.  , 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [8] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] 梅宇涵, 邵越, 杭志宏. 基于紧束缚模型的拓扑物理微波实验验证平台的开发.  , 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [10] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强.  , 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究.  , 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质.  , 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [13] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究.  , 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [14] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [15] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态.  , 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [17] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [19] 王雪梅, 刘红. 锯齿型石墨烯纳米带的能带研究.  , 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [20] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究.  , 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
计量
  • 文章访问数:  12650
  • PDF下载量:  3899
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-05
  • 修回日期:  2013-06-16
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map