搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Cd氧化锌的电子结构及相结构稳定性的第一性原理研究

濮春英 唐鑫 吕海峰 张庆瑜

引用本文:
Citation:

掺Cd氧化锌的电子结构及相结构稳定性的第一性原理研究

濮春英, 唐鑫, 吕海峰, 张庆瑜

First-principles study on the electronic structures and structural stability of Cd-doped ZnO

Tang Xin, Zhang Qing-Yu, Lü Hai-Feng, Pu Chun-Ying
PDF
导出引用
  • 采用基于密度泛函理论结合投影缀加平面波方法的VASP软件包,在考虑所有掺杂原子构型的前提下,对Cd掺杂ZnO合金的晶格常数、禁带宽度、电子态密度和形成焓进行了计算,分析了Cd含量和掺杂原子构型对纤锌矿wz-Zn1-xCdxO合金的电子结构和结构稳定性的影响.计算结果表明:随着Cd含量的不断增加,纤锌矿ZnCdO合金的平均晶格常数a,c均线性增加,但c/a的比值不会发生显著的变化;纤锌矿ZnCd
    The VASP (Vienna Ab-initio Simulation Package) based on the density-functional theory (DFT) method combined with projector augmented wave (PAW) method is used to calculate the lattice parameters, band gap, density of states (DOS), and formation enthalpy of ZnCdO alloy by considering all the doping configurations. The calculation results indicate that the average parameters of wurtzite (wz) Zn1-xCdxO alloy, a and c, increase linearly, but the ratio of c/a does not change obviously with the increase of Cd content. With increasing Cd content, the band gap is reduced and the variation of band gap can be fitted by Eg(x)=3.28-5.04x+4.60x2, which is consistent with the experimental results. At a given Cd content, different doping configurations result in different Eg values, being one of the reasons of widening of the photoluminescence spectra of ZnCdO alloy. The DOS of wz-ZnCdO alloy in conduction band is shifted towards the lower energy side after Cd doping, causing the reduction of band gap. The reduction of band gap can be attributed to the contribution of 5s states of Cd. By comparing the formation enthalpy of wz-ZnCdO with those of zinc blende and rocksalt ZnCdO alloys, we find that the wurtzite phase of ZnCdO can coexist with zinc blende phase in the range of Cd content from 0.25 to 0.75 and will transit to the rocksalt phase at the Cd content of about 0.80.
    • 基金项目: 国家自然科学基金(批准号:10774018)和国家重点基础研究发展计划(批准号:2007CB616902)资助的课题.
    [1]

    Yu P,Tang Z K,Wong G K L, Kawasaki M, Ohtomo A, Koinuma H, Seqawa Y 1996 23nd Int Conf on the Physics of Semiconductors, World Scientific, Singapore, 1996 p1453

    [2]

    Sun C W, Liu Z W, Zhang Q Y 2006 Acta Phys. Sin. 55 430 (in Chinese) [孙成伟、 刘志文、 张庆瑜 2006 55 0430]

    [3]

    Liu Z W, Gu J F, Sun C W, Zhang Q Y 2006 Acta Phys. Sin. 55 1965 (in Chinese) [刘志文、 谷建峰、 孙成伟、 张庆瑜 2006 55 1965]

    [4]

    Sun C W, Xin P, Liu Z W, Zhang Q Y 2006 Appl. Phys. Lett. 88 221914

    [5]

    Liu Z W, Sun C W, Gu J F, Zhang Q Y 2006 Appl. Phys. Lett. 88 251911

    [6]

    Xin P, Sun C W, Qin F W, Wen S P, Zhang Q Y 2007 Acta Phys. Sin. 56 1082 (in Chinese) [辛 萍、 孙成伟、 秦福文、 文胜平、 张庆瑜 2007 56 1082]

    [7]

    Liu Z W, Fu W J, Liu M, Gu J F, Ma C Y, Zhang Q Y 2008 Surface and Coatings Technology 202 5410

    [8]

    zgür V, Alivov Ya I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S J, Markoc H 2005 J. Appl. Phys. 98 041301

    [9]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐 鑫、 吕海峰、 马春雨、 赵纪军、 张庆瑜 2008 57 7806]

    [10]

    Tang X,Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫、 吕海峰、 马春雨、 赵纪军、 张庆瑜 2008 57 1066]

    [11]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys.: Condens. Matter 20 235221

    [12]

    Sun C W, Xin P, Ma C Y, Liu Z W, Zhang Q Y 2006 Appl. Phys. Lett. 89 181923

    [13]

    Gruber Th, Kirchner C, Kling R, Gruber Th, Reuss F, Kichner C, Waag A, Kling R 2003 Appl. Phys. Lett. 83 3290

    [14]

    Bertram F, Giemsch S, Forster D, Christen J, Kling R, Kirchner C, Waag A 2006 Appl. Phys. Lett. 88 061915

    [15]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 36 864

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Adolph B, Furthmuller J, Bechstedt F 2001 Phys. Rev. B 63 125108

    [18]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Hoherberg P, Kohn W 1964 Phys. Rev. B 36 864

    [21]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [22]

    Decremps F, Dathi F, Poloan A, Saitta A M, Pasearelli S, Di Cicco A, Itie J P, Baudelet F 2003 Phys. Rev. B 68 104101

    [23]

    Jaffe J E, Snyder J A, Lin Z, Hess A C 2000 Phys. Rev. B 62 1660

    [24]

    Oshilciri M, Aryasetiawan F 2004 Phys. Rev. B 70 054104

    [25]

    Ashrafi A B M A, Ueta A, Avramescu A, Kumano H, Suemune I 2000 Appl. Phys. Lett. 76 550

    [26]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [27]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys.-Chim. Sin. 24 1233 (in Chinese) [孙慧卿、 丁少峰、 王雨田、 邓 贝、 范广涵 2008物理化学学报 24 1233 ]

    [28]

    Chen X H, Kang J Y 2008 Semicond. Sci. Technol. 23 025008

    [29]

    Sanati M, Hart G L W, Zunger Alex 2003 Phys. Rev. B 68 125108

    [30]

    Tang X,LU H F, Zhao J J, Zhang Q Y 2010 J. Physics and Chemistry of Solids 71 336

    [31]

    Janotti A, Segev D, Van de Walle C G 2006 Phys. Rev. B 74 45202

    [32]

    Zúiga-Pérez J, Muoz-Sanjosé V, Lorenz M, Benndorf G, Heitsch S, Spemann D, Grundmann M 2006 J. Appl. Phys. 99 023514

    [33]

    Ishihara J, Nakamura A, Shigemori A, Aoki T, Temmyo J 2006 Appl. Phys. Lett. 89 091914

  • [1]

    Yu P,Tang Z K,Wong G K L, Kawasaki M, Ohtomo A, Koinuma H, Seqawa Y 1996 23nd Int Conf on the Physics of Semiconductors, World Scientific, Singapore, 1996 p1453

    [2]

    Sun C W, Liu Z W, Zhang Q Y 2006 Acta Phys. Sin. 55 430 (in Chinese) [孙成伟、 刘志文、 张庆瑜 2006 55 0430]

    [3]

    Liu Z W, Gu J F, Sun C W, Zhang Q Y 2006 Acta Phys. Sin. 55 1965 (in Chinese) [刘志文、 谷建峰、 孙成伟、 张庆瑜 2006 55 1965]

    [4]

    Sun C W, Xin P, Liu Z W, Zhang Q Y 2006 Appl. Phys. Lett. 88 221914

    [5]

    Liu Z W, Sun C W, Gu J F, Zhang Q Y 2006 Appl. Phys. Lett. 88 251911

    [6]

    Xin P, Sun C W, Qin F W, Wen S P, Zhang Q Y 2007 Acta Phys. Sin. 56 1082 (in Chinese) [辛 萍、 孙成伟、 秦福文、 文胜平、 张庆瑜 2007 56 1082]

    [7]

    Liu Z W, Fu W J, Liu M, Gu J F, Ma C Y, Zhang Q Y 2008 Surface and Coatings Technology 202 5410

    [8]

    zgür V, Alivov Ya I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S J, Markoc H 2005 J. Appl. Phys. 98 041301

    [9]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐 鑫、 吕海峰、 马春雨、 赵纪军、 张庆瑜 2008 57 7806]

    [10]

    Tang X,Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫、 吕海峰、 马春雨、 赵纪军、 张庆瑜 2008 57 1066]

    [11]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys.: Condens. Matter 20 235221

    [12]

    Sun C W, Xin P, Ma C Y, Liu Z W, Zhang Q Y 2006 Appl. Phys. Lett. 89 181923

    [13]

    Gruber Th, Kirchner C, Kling R, Gruber Th, Reuss F, Kichner C, Waag A, Kling R 2003 Appl. Phys. Lett. 83 3290

    [14]

    Bertram F, Giemsch S, Forster D, Christen J, Kling R, Kirchner C, Waag A 2006 Appl. Phys. Lett. 88 061915

    [15]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 36 864

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Adolph B, Furthmuller J, Bechstedt F 2001 Phys. Rev. B 63 125108

    [18]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Hoherberg P, Kohn W 1964 Phys. Rev. B 36 864

    [21]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [22]

    Decremps F, Dathi F, Poloan A, Saitta A M, Pasearelli S, Di Cicco A, Itie J P, Baudelet F 2003 Phys. Rev. B 68 104101

    [23]

    Jaffe J E, Snyder J A, Lin Z, Hess A C 2000 Phys. Rev. B 62 1660

    [24]

    Oshilciri M, Aryasetiawan F 2004 Phys. Rev. B 70 054104

    [25]

    Ashrafi A B M A, Ueta A, Avramescu A, Kumano H, Suemune I 2000 Appl. Phys. Lett. 76 550

    [26]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [27]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys.-Chim. Sin. 24 1233 (in Chinese) [孙慧卿、 丁少峰、 王雨田、 邓 贝、 范广涵 2008物理化学学报 24 1233 ]

    [28]

    Chen X H, Kang J Y 2008 Semicond. Sci. Technol. 23 025008

    [29]

    Sanati M, Hart G L W, Zunger Alex 2003 Phys. Rev. B 68 125108

    [30]

    Tang X,LU H F, Zhao J J, Zhang Q Y 2010 J. Physics and Chemistry of Solids 71 336

    [31]

    Janotti A, Segev D, Van de Walle C G 2006 Phys. Rev. B 74 45202

    [32]

    Zúiga-Pérez J, Muoz-Sanjosé V, Lorenz M, Benndorf G, Heitsch S, Spemann D, Grundmann M 2006 J. Appl. Phys. 99 023514

    [33]

    Ishihara J, Nakamura A, Shigemori A, Aoki T, Temmyo J 2006 Appl. Phys. Lett. 89 091914

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究.  , 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [3] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究.  , 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [4] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [5] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究.  , 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [6] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [10] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [11] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究.  , 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [12] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究.  , 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [13] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [14] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究.  , 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] 邓永和, 刘京铄. Mg-TM-H (TM=Sc, Ti, V, Y, Zr, Nb)晶体形成能力和电子性能.  , 2011, 60(11): 117102. doi: 10.7498/aps.60.117102
    [16] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [17] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究.  , 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [18] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [19] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  8602
  • PDF下载量:  993
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-20
  • 修回日期:  2010-06-17
  • 刊出日期:  2011-03-15

/

返回文章
返回
Baidu
map