搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷原子系综中光纤腔增强且高保真度的光学存储

温亚飞 田剑锋 王志强 庄园园

引用本文:
Citation:

冷原子系综中光纤腔增强且高保真度的光学存储

温亚飞, 田剑锋, 王志强, 庄园园

Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble

Wen Ya-Fei, Tian Jian-Feng, Wang Zhi-Qiang, Zhuang Yuan-Yuan
PDF
HTML
导出引用
  • 利用原子系综中的Duan-Lukin-Cirac-Zoller (DLCZ)过程可产生光与原子记忆(自旋波)量子纠缠, 该纠缠可作为量子中继的重要元件. 随着量子信息研究的深入发展, 人们对量子信息存储其灵活多样性、可控性等方面提出更高的要求. 本文在冷原子系综中演示了一种基于DLCZ过程的光纤腔增强且高保真度的光学存储方案, 即将87Rb原子系综放于设计的光纤腔中, 通过光纤腔增强“写出”和“读出”光子与原子系综的耦合实现自旋波量子信息的有效恢复, 同时具有较高的保真度. 观察到有腔且锁定的情况下斯托克斯光子产生概率比无腔时增加4.6倍, 原子自旋波读出效率增加1.6倍, 实验实现22%的读出效率并具有92%的量子态保真度, 该读出效率对应一个40%的本质读出效率. 这种高度可恢复、高量子态保真度的原子-光子纠缠源, 可为未来长距离量子通信及广域大规模量子网络构建的实现提供另一种有效的途径.
    Entanglement between a photon and an atomic memory is an important tool for quantum repeater research. By using the Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble, quantum entanglement between a photon and an atomic spin-wave memory is produced. With the further development of quantum information, it is necessary to put forward higher requirements for the diversity and controllability of quantum memory. In this work, we experimentally demonstrate an optical memory in cold atomic ensemble with enhanced fiber-cavity and high-fidelity optical memory for the first time. We design a fiber cavity to enhance the coupling strength between light and atomic ensemble and then improve the optical retrieval efficiency. Unfortunately, the use of fiber cavity may lead to the decrease of fidelity. Therefore, it is vital to realize high fidelity in the enhanced fiber-cavity optical memory. The cavity has a round-trip length of 1.5 m and a free spectral range of 190 MHz. The finesse (F) of the cavity with the cold atoms in the DLCZ condition is measured to be $ \sim $18. In cavity-enhanced DLCZ scheme, we use a fiber cavity instead of a stationary cavity. If a stationary cavity is used, the signal light will be reflected by the end mirror of the cavity and then pass back through the atoms. The storage of the backward signal light will generate a short-wavelength spin wave and then lead to a rapid decoherence of the memory. When cavity is locked by using the PDH frequency locking technique, we observe that the production probability of the Stokes photons is increased by 4.6 times higher than that without cavity and retrieval efficiency of atomic spin wave is increased by 1.6 times that without cavity due to the optical cavity enhancement effect. The presented cavity-enhanced storage shows that the retrieval efficiency is $ \sim $22%, corresponding to an intrinsic retrieval efficiency of $ \sim $40%, at the same time the fidelity of the quantum state is $ \sim $92%. The accomplishment of this project will provide another effective way of realizing long-distance quantum communication and large-scale quantum network construction.
      通信作者: 温亚飞, 18234061008@163.com
    • 基金项目: 山西省自然科学基金 (批准号: 20210302124265) 和山西省高等学校科技创新计划 (批准号: 2021L426)资助的课题.
      Corresponding author: Wen Ya-Fei, 18234061008@163.com
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302124265) and the Scientific and Technological Programs of Higher Education Institutions of Shanxi Province, China (Grant No. 2021L426).
    [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar

    [3]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [4]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [5]

    Simon C 2017 Nature Photon. 11 678Google Scholar

    [6]

    Matsukevich D N, Chaneliere T, Bhattacharya M, Lan S Y, Jenkins S D, Kennedy T A B, Kuzmich A 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [7]

    de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar

    [8]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar

    [9]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9 332Google Scholar

    [10]

    Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Yuan H X, Wen Y F, Wang H, Xie C D, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar

    [11]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W, 2007 Phys. Rev. Lett. 98 240502Google Scholar

    [12]

    Chen Z B, Zhao B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. A 76 022329Google Scholar

    [13]

    Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [14]

    Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar

    [15]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [16]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nature Photon. 13 346Google Scholar

    [17]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar

    [18]

    Bao X H, Reingruber A, Dietrich P, Rui J, Duck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nature Phys. 8 517Google Scholar

    [19]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, J W Pan 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [20]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [21]

    Afzelius M, Simon C 2010 Phys. Rev. A 82 022310Google Scholar

    [22]

    Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar

    [23]

    Jobez P, Usmani I, Timoney N, Laplane C, Gisin N, Afzelius M 2014 New J. Phys. 16 083005Google Scholar

    [24]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [25]

    袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海 2021 70 070302Google Scholar

    Yuan L, Wen Y F, Li Y, Liu C, Li S J, Xu Z X, Wang H 2021 Acta Phys. Sin. 70 070302Google Scholar

    [26]

    Wen Y F, Zhou P, Xu Z X, Yuan L, Wang M J, Wang S Z, Chen L R, Wang H 2020 Opt. Express 28 360Google Scholar

    [27]

    Nikolett N, Donald W, Shinya K, Scott P, Takao A 2020 Phys. Rev. Appl. 13 064010Google Scholar

    [28]

    Zeeb S, Noh C, Parkins A S, Carmichael H J 2015 Phys. Rev. A 91 023829Google Scholar

    [29]

    Huang H, Lehmann K K 2007 Opt. Express 15 8745Google Scholar

    [30]

    周继阳, 李强, 许金时, 李传锋, 郭光灿 2022 71 060303Google Scholar

    Zhou J Y, Li Q, Xu J S, Li C F, Guo G G 2022 Acta Phys. Sin. 71 060303Google Scholar

    [31]

    Wen Y F, Zhou P, Xu Z X, Yuan L, Zhang H Y, Wang S Z, Tian L, Li S J, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [32]

    Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang S Z, Li S J, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [33]

    White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar

    [34]

    James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar

  • 图 1  (a) 实验装置图; (b) 87Rb原子实验能级图(PBS, 偏振分束棱镜; D(PD1), 单光子探测器(探测器); HWP, 1/2波片; QWP, 1/4波片; Etalon, F-P标准具滤波器; HR1—HR3, 高反射镜; BF, 窄带滤波片; BS, 非偏振分束镜; PR, 部分反射镜; 80/20 FC, 分光比80∶20光纤耦合器; AOM, 声光调制器; PC, 相位补偿器; $ {\sigma ^ + } $($ {\sigma ^ - } $)为右旋(左旋)圆偏振的出射光子; W(R)为写(读)光场)

    Fig. 1.  (a) Experimental setup; (b) experimental energy levels of 87Rb atomic (PBS, polarization beam splitter; D(PD1), single photon detector (detector); HWP, half wave plate; QWP, quarter wave plate; Etalon, F-P Etalon; HR1—HR3, highly reflecting mirrors; BF, bandpass filter; BS, nonpolarizing beamsplitter; PR, partially reflecting mirror; 80/20 FC, 80∶20 fiber coupler; AOM, acousto optic modulator; PC, phase compensators; $ {\sigma ^ + } $($ {\sigma ^ - } $) represents right (left) polarization of emitted photon; W(R) represents writing (reading) field).

    图 2  实验时序图

    Fig. 2.  Time sequence of experimental cycle.

    图 3  激发率随锁腔光失谐变化

    Fig. 3.  Excitation probability as the function of the detuning of locking light beam.

    图 4  读出效率随存储时间的变化测量

    Fig. 4.  Measurement of retrieval efficiency as a function of the storage time.

    图 5  χ = 1%, 有无光纤腔时Bell参数随存储时间变化

    Fig. 5.  Measured Bell parameter with and without the cavity as a function of storage time for χ = 1%.

    图 6  利用最大似然近似方法重构双光子偏振纠缠态密度矩阵的实部与虚部(${{\chi }} = 1{\text{%}} $)

    Fig. 6.  Real and imaginary parts of the reconstructed density matrices of the two-photon entangled state (${{\chi }} = 1{\text{%}} $).

    Baidu
  • [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar

    [3]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [4]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [5]

    Simon C 2017 Nature Photon. 11 678Google Scholar

    [6]

    Matsukevich D N, Chaneliere T, Bhattacharya M, Lan S Y, Jenkins S D, Kennedy T A B, Kuzmich A 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [7]

    de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar

    [8]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar

    [9]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9 332Google Scholar

    [10]

    Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Yuan H X, Wen Y F, Wang H, Xie C D, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar

    [11]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W, 2007 Phys. Rev. Lett. 98 240502Google Scholar

    [12]

    Chen Z B, Zhao B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. A 76 022329Google Scholar

    [13]

    Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [14]

    Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar

    [15]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [16]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nature Photon. 13 346Google Scholar

    [17]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar

    [18]

    Bao X H, Reingruber A, Dietrich P, Rui J, Duck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nature Phys. 8 517Google Scholar

    [19]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, J W Pan 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [20]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [21]

    Afzelius M, Simon C 2010 Phys. Rev. A 82 022310Google Scholar

    [22]

    Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar

    [23]

    Jobez P, Usmani I, Timoney N, Laplane C, Gisin N, Afzelius M 2014 New J. Phys. 16 083005Google Scholar

    [24]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [25]

    袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海 2021 70 070302Google Scholar

    Yuan L, Wen Y F, Li Y, Liu C, Li S J, Xu Z X, Wang H 2021 Acta Phys. Sin. 70 070302Google Scholar

    [26]

    Wen Y F, Zhou P, Xu Z X, Yuan L, Wang M J, Wang S Z, Chen L R, Wang H 2020 Opt. Express 28 360Google Scholar

    [27]

    Nikolett N, Donald W, Shinya K, Scott P, Takao A 2020 Phys. Rev. Appl. 13 064010Google Scholar

    [28]

    Zeeb S, Noh C, Parkins A S, Carmichael H J 2015 Phys. Rev. A 91 023829Google Scholar

    [29]

    Huang H, Lehmann K K 2007 Opt. Express 15 8745Google Scholar

    [30]

    周继阳, 李强, 许金时, 李传锋, 郭光灿 2022 71 060303Google Scholar

    Zhou J Y, Li Q, Xu J S, Li C F, Guo G G 2022 Acta Phys. Sin. 71 060303Google Scholar

    [31]

    Wen Y F, Zhou P, Xu Z X, Yuan L, Zhang H Y, Wang S Z, Tian L, Li S J, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [32]

    Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang S Z, Li S J, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [33]

    White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar

    [34]

    James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar

  • [1] 温亚飞, 庄园园, 王志强, 高士回. 高效率时间复用Duan-Lukin-Cirac-Zoller存储方案的实验研究.  , 2024, 73(18): 180301. doi: 10.7498/aps.73.20240799
    [2] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响.  , 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [3] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征.  , 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [4] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储.  , 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [5] 马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究.  , 2022, 71(2): 020301. doi: 10.7498/aps.71.20210881
    [6] 周继阳, 李强, 许金时, 李传锋, 郭光灿. 光纤腔耦合碳化硅薄膜的理论计算.  , 2022, 71(6): 060303. doi: 10.7498/aps.71.20211797
    [7] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究.  , 2021, (): . doi: 10.7498/aps.70.20210881
    [8] 袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海. 原子系综中光学腔增强的Duan-Lukin-Cirac-Zoller写过程激发实验.  , 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [9] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案.  , 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [10] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性.  , 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [11] 周瑶瑶, 田剑锋, 闫智辉, 贾晓军. 两腔级联纠缠增强的理论分析.  , 2019, 68(6): 064205. doi: 10.7498/aps.68.20182079
    [12] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [13] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [14] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理.  , 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [15] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究.  , 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [16] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析.  , 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [17] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度.  , 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [18] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度.  , 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [19] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度.  , 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [20] 王忠纯. 外场驱动对Tavis-Cummings模型中量子态保真度的影响.  , 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
计量
  • 文章访问数:  3858
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2022-12-21
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map