搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成射流对层流状态下圆柱辐射噪声的影响

宋健 任峰 胡海豹 陈效鹏

引用本文:
Citation:

合成射流对层流状态下圆柱辐射噪声的影响

宋健, 任峰, 胡海豹, 陈效鹏

Effect of synthetic jet on circular cylinder radiated noise in laminar flow state

Song Jian, Ren Feng, Hu Hai-Bao, Chen Xiao-Peng
PDF
HTML
导出引用
  • 主动流动控制是降低流动噪声的新型途径, 近年来吸引了研究者的广泛关注. 利用二维格林函数, 推导得到了忽略四极子影响的声比拟方程的二维时域解. 在此基础之上, 基于格子Boltzmann方法为核心的流场求解器以及声比拟方程为核心的声场求解器, 在低雷诺数(Re = 100)下, 开展了合成射流频率和相位差对圆柱绕流近壁流场和声辐射远场影响的数值模拟研究. 结果表明, 在利用合成射流减小圆柱阻力时, 出现了两种频率锁定状态, 且远场辐射噪声会发生明显变化. 提高射流频率或减小相位差会增强射流的自噪声, 导致远场辐射声压进一步增大, 并使得指向性由偶极子类型转变为单极子类型. 在各个控制参数组合下, 远场的总辐射噪声增加, 与未施加控制时相比声功率增加了4到18 dB, 同时, 阻力方向的噪声始终增强. 本研究可为探索低辐射噪声的合成射流控制策略提供参考数据.
    This article focuses on the effect of active control via synthetic jets (SJs) on sound generated by a two-dimensional circular cylinder by using the acoustic analogy method. The cylinder is immersed in a uniform upstream flow, where the corresponding Reynolds number is 100 and the Mach number is 0.1. A pair of SJs is placed near the cylinder’s separation point issuing periodically varying forcing, with different combinations of forcing frequency and phase difference. The lattice Boltzmann method (LBM) is coupled with the multi-direct forcing immersed boundary method to solve the near-field flow dynamics. The mechanism of the sound generation lies in the fact that pressure pluses are induced by the periodic vortex shedding from the cylinder’s surface, i.e. dipoles. In the case with active flow control, extra monopoles are generated by the unsteady flow rate resulting from the SJs' periodic blow/suction. The interaction between monopoles and dipoles is confirmed to have a big influence on the acoustic field. The acoustic analogy method is used in various cases with a wide range of control parameters, because it has a considerably lower computational cost than the direct simulation method. Taking into account the effect of the monopole, the acoustic analogy method is developed for solving two-dimensional sound field by substituting the Green’s function. Results indicate that the primary lock-on and the secondary lock-on occur in the case of specified control parameters. The frequency of vortex shedding is related to the SJs’ frequency, deviating from the unforced frequency. Owing to the noise induced by flow, the frequency and phase difference of the SJs also have significant influence on sound field. The far-field noise is enlarged although the SJs reduce drag, due to the induced extra monopole, as well as the strengthened hydrodynamic fluctuation. Further increasing SJs’ frequency or reducing the phase difference will enlarge the far-field noise and make the directivity transformed from dipole to monopole, since the SJs’ self-noise is stronger. Moreover, it is found that the acoustic power increases approximately 4–18 dB compared with the unforced circular cylinder and the drag dipole is strengthened in all combinations of control parameters. This study deepens the understanding of the effect of SJs on sound field, and provides a reference for future studying the control strategies of suppressing noise generated from bluff bodies.
      通信作者: 任峰, renfeng@nwpu.edu.cn ; 胡海豹, huhaibao@nwpu.edu.cn
    • 基金项目: 船舶总体性能创新研究开放基金(批准号: 31122122)、河南省水下智能装备重点实验室开放基金(批准号: KL01B2101)、国家超级计算郑州中心首批创新生态系统建设科技专项(批准号: 201400211100)、国家自然科学基金(批准号: 12102357)、气动噪声控制重点实验室开放课题(批准号: ANCL20210103)和重庆市自然科学基金(批准号: cstc2021jcyj-msxmX0394)资助的课题.
      Corresponding author: Ren Feng, renfeng@nwpu.edu.cn ; Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the Open Fund of the Innovative Research of Ship General Performance, China (Grant No. 31122122), the Open Fund of Henan Key Laboratory of Underwater Intelligent Equipment, China (Grant No. KL01B2101), the First Batch of Science and Technology Projects for Innovation Ecosystem Construction by the National Supercomputing Center in Zhengzhou, China (Grant No. 201400211100), the National Natural Science Foundation of China (Grant No. 12102357), the Open Fund of the Laboratory of Aerodynamic Noise Control, China (Grant No. ANCL20210103), and the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0394).
    [1]

    Inoue O, Hatakeyama N 2002 J. Fluid Mech. 471 285Google Scholar

    [2]

    钟思阳, 黄迅 2018 空气动力学学报 36 363

    Zhong S Y, Huang X 2018 Acta Aerodyn. Sin. 36 363

    [3]

    杨茵, 陈迎春, 李栋 2017 空气动力学学报 35 220

    Yang Yin, Chen Y C, Li D 2017 Acta Aerodyn. Sin. 35 220

    [4]

    Ren F, Jean R, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [5]

    Wang C L, Tang H, Yu S C M, Duan F 2016 Phys. Fluids 28 053601Google Scholar

    [6]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Fluids 29 083602Google Scholar

    [7]

    Wang C L, Tang H, Duan F, Yu S C M 2016 J. Fluids Struct. 60 160Google Scholar

    [8]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Rev. Fluids 2 104701Google Scholar

    [9]

    陈蒋力, 陈少强, 任峰, 胡海豹 2022 71 084701Google Scholar

    Chen J L, Chen S Q, Ren F, Hu H B 2022 Acta Phys. Sin. 71 084701Google Scholar

    [10]

    Ren F, Wang C L, Tang H 2021 Phys. Fluids 33 093601Google Scholar

    [11]

    Du L, Sun X F 2019 J. Fluids Struct. 84 421Google Scholar

    [12]

    Huang X, Zhang X, Li Y 2010 J. Sound Vib. 329 2477Google Scholar

    [13]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2019 Aerosp. Sci. Technol. 94 105370Google Scholar

    [14]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2020 Aerosp. Sci. Technol. 106 106137Google Scholar

    [15]

    Guo Y P 2008 J. Sound Vib. 311 843Google Scholar

    [16]

    Inoue O, Mori M, Hatakeyama N 2003 Phys. Fluids 15 1424Google Scholar

    [17]

    Ganta N, Mahato B, Bhumkar Y G 2019 Phys. Fluids 31 026104Google Scholar

    [18]

    Thomas F O, Kozlov A, Corke T C 2008 AIAA J. 46 1921Google Scholar

    [19]

    Leonidas S, Chris L, Ghader G 2017 J. Fluids Struct. 69 293Google Scholar

    [20]

    Angland D, Zhang X, Goodyer M 2012 AIAA J. 50 1670Google Scholar

    [21]

    Abbasi S, Souri M 2020 Int. J. Appl. Mech. 12 2050036Google Scholar

    [22]

    Wang M, Freund J B, Lele S K 2006 Annu. Rev. Fluid. Mech. 38 483Google Scholar

    [23]

    Guo Y P 2000 J. Fluid Mech. 403 201Google Scholar

    [24]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [25]

    d'Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [26]

    Guo Z L, Zheng C G 2008 Int. J. Comput. Fluid Dyn. 22 465Google Scholar

    [27]

    Peskin C S 2002 Acta Numer. 11 479Google Scholar

    [28]

    Wang Z L, Fan J R, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [29]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [30]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [31]

    戈德斯坦 著 (闫再友 译) 2014 气动声学 (北京: 国防工业出版社) 第97页

    Goldstein M E (translated by Yan Z Y) 2014 Aeroacoustics (Beijing: National Defence Industry Press) p97 (in Chinese)

    [32]

    Russell David, Wang Z J 2003 J. Comput. Phys. 191 177Google Scholar

    [33]

    Liu C, Zheng X, Sung C H 1998 J. Comput. Phys. 139 35Google Scholar

    [34]

    Chen X P, Ren H 2015 Int. J. Numer. Meth. Fluids 79 183Google Scholar

    [35]

    Williamson C H K, Brown G L 1998 J. Fluids Struct. 12 1073Google Scholar

    [36]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353Google Scholar

    [37]

    Margnat F 2015 Comput. Fluids 109 13Google Scholar

  • 图 1  基于合成射流的圆柱主动控制示意图

    Fig. 1.  Schematic of the active control of a circular cylinder using synthetic jets.

    图 2  计算域示意图

    Fig. 2.  Schematic of the computational domain.

    图 3  利用流-声混合方法求解得到的瞬时声辐射场

    Fig. 3.  Instantaneous pressure field computed via the hybrid flow-acoustics solver.

    图 4  测点(70D0, 0)位置瞬时声压对比图

    Fig. 4.  Comparisons of temporally varying sound pressure at monitor point (70D0, 0).

    图 5  不同控制参数下发生频率锁定的情况

    Fig. 5.  Lock-on events under a range of control parameters.

    图 6  典型控制参数下流场云图 (a) 未施加控制时; (b) $f_{\rm{sj }}^*=1$, Δϕ = π; (c) $f_{\rm{sj }}^*=2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π

    Fig. 6.  Instantaneous vorticity contours: (a) Unforced case; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^* =2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π.

    图 7  CL-CD相图 (a)未施加控制时; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^* =2$, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π

    Fig. 7.  Phase diagrams of CL-CD: (a) Unforced case; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^*=2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π.

    图 8  不同控制参数下流体动力参数的时频域特性 (a) 未施加控制时; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^*=2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π

    Fig. 8.  Time history and frequency spectra of the cylinder’s force coefficients: (a) Unforced case; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^* =2$, Δϕ = π; (d) $f_{\rm{sj }}^*=2.1 $, Δϕ = 0.5π.

    图 9  不同控制参数下圆柱的平均阻力系数

    Fig. 9.  Time-averaged drag coefficients under a range of control parameters.

    图 10  $f_{\rm{sj }}^* =0.9$时, 不同相位差Δϕr' = 75D0范围声辐射指向性

    Fig. 10.  Directivity of the pressure p'rms measured at r' = 75D0 with different Δϕ when fsj* = 0.9.

    图 11  $f_{\rm{sj }}^* =0.9$, Δϕ = 0.5π时 (a) 圆柱升阻力与上下射流瞬时速度和随时间变化曲线; (b), (c) 对应时刻声源相互作用示意图

    Fig. 11.  (a) Instantaneous lift coefficient, drag coefficient and ua, and (b), (c) Interaction between monopole and dipole when $f_{\rm{sj }}^* =0.9$, Δϕ = 0.5π.

    图 12  $f_{\rm{sj }}^* =1.1$时, 不同相位差Δϕr' = 75D0范围声辐射指向性

    Fig. 12.  Directivity of the pressure p'rms measured at r' = 75D0 with different Δϕ when $f_{\rm{sj }}^* $ = 1.1.

    图 13  $f_{\rm{sj }}^* =2.1$时, 不同相位差Δϕr' = 75D0范围声辐射指向性

    Fig. 13.  Directivity of the pressure p'rms measured at r' = 75D0 for different Δϕ when $f_{\rm{sj }}^* =2.1 $.

    图 14  Δϕ = 0.5π时, 不同射流频率$f_{\rm{sj }}^*$r' = 75D0范围声辐射指向性

    Fig. 14.  Directivity of the pressure p'rms measured at r' = 75D0 with different $ f_{\rm{sj }}^* $ when Δϕ = 0.5π.

    图 15  不同控制参数下圆柱辐射噪声的声功率级

    Fig. 15.  Acoustic power level measured at r' = 75D0 under a range of control parameters.

    表 1  主动控制的参数范围

    Table 1.  Parameter range of the synthetic jet based active control.

    参数范围
    射流频率 $ f_{\rm sj}^* $0.8—1.2, 1.5, 1.9—2.1, 2.9—3.1
    相位差 Δϕ0, 0.25π, 0.5π, 0.75π, π
    下载: 导出CSV

    表 2  网格无关性检验

    Table 2.  Validation of the mesh resolution and verification at Re = 100.

    CaseMethodologyCLSt
    D0 = 32δxLBM+IBM±0.3540.167
    D0 = 64δxLBM+IBM±0.3500.167
    D0 = 128δxLBM+IBM±0.3440.164
    Wang et al.[6]LBM±0.3290.166
    Russell and Wang[32]NS±0.3320.169
    Liu et al.[33]NS±0.3390.165
    下载: 导出CSV
    Baidu
  • [1]

    Inoue O, Hatakeyama N 2002 J. Fluid Mech. 471 285Google Scholar

    [2]

    钟思阳, 黄迅 2018 空气动力学学报 36 363

    Zhong S Y, Huang X 2018 Acta Aerodyn. Sin. 36 363

    [3]

    杨茵, 陈迎春, 李栋 2017 空气动力学学报 35 220

    Yang Yin, Chen Y C, Li D 2017 Acta Aerodyn. Sin. 35 220

    [4]

    Ren F, Jean R, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [5]

    Wang C L, Tang H, Yu S C M, Duan F 2016 Phys. Fluids 28 053601Google Scholar

    [6]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Fluids 29 083602Google Scholar

    [7]

    Wang C L, Tang H, Duan F, Yu S C M 2016 J. Fluids Struct. 60 160Google Scholar

    [8]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Rev. Fluids 2 104701Google Scholar

    [9]

    陈蒋力, 陈少强, 任峰, 胡海豹 2022 71 084701Google Scholar

    Chen J L, Chen S Q, Ren F, Hu H B 2022 Acta Phys. Sin. 71 084701Google Scholar

    [10]

    Ren F, Wang C L, Tang H 2021 Phys. Fluids 33 093601Google Scholar

    [11]

    Du L, Sun X F 2019 J. Fluids Struct. 84 421Google Scholar

    [12]

    Huang X, Zhang X, Li Y 2010 J. Sound Vib. 329 2477Google Scholar

    [13]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2019 Aerosp. Sci. Technol. 94 105370Google Scholar

    [14]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2020 Aerosp. Sci. Technol. 106 106137Google Scholar

    [15]

    Guo Y P 2008 J. Sound Vib. 311 843Google Scholar

    [16]

    Inoue O, Mori M, Hatakeyama N 2003 Phys. Fluids 15 1424Google Scholar

    [17]

    Ganta N, Mahato B, Bhumkar Y G 2019 Phys. Fluids 31 026104Google Scholar

    [18]

    Thomas F O, Kozlov A, Corke T C 2008 AIAA J. 46 1921Google Scholar

    [19]

    Leonidas S, Chris L, Ghader G 2017 J. Fluids Struct. 69 293Google Scholar

    [20]

    Angland D, Zhang X, Goodyer M 2012 AIAA J. 50 1670Google Scholar

    [21]

    Abbasi S, Souri M 2020 Int. J. Appl. Mech. 12 2050036Google Scholar

    [22]

    Wang M, Freund J B, Lele S K 2006 Annu. Rev. Fluid. Mech. 38 483Google Scholar

    [23]

    Guo Y P 2000 J. Fluid Mech. 403 201Google Scholar

    [24]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [25]

    d'Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [26]

    Guo Z L, Zheng C G 2008 Int. J. Comput. Fluid Dyn. 22 465Google Scholar

    [27]

    Peskin C S 2002 Acta Numer. 11 479Google Scholar

    [28]

    Wang Z L, Fan J R, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [29]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [30]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [31]

    戈德斯坦 著 (闫再友 译) 2014 气动声学 (北京: 国防工业出版社) 第97页

    Goldstein M E (translated by Yan Z Y) 2014 Aeroacoustics (Beijing: National Defence Industry Press) p97 (in Chinese)

    [32]

    Russell David, Wang Z J 2003 J. Comput. Phys. 191 177Google Scholar

    [33]

    Liu C, Zheng X, Sung C H 1998 J. Comput. Phys. 139 35Google Scholar

    [34]

    Chen X P, Ren H 2015 Int. J. Numer. Meth. Fluids 79 183Google Scholar

    [35]

    Williamson C H K, Brown G L 1998 J. Fluids Struct. 12 1073Google Scholar

    [36]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353Google Scholar

    [37]

    Margnat F 2015 Comput. Fluids 109 13Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制.  , 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [3] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力.  , 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [4] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法.  , 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [5] 顾娟, 黄荣宗, 刘振宇, 吴慧英. 一种滑移区气体流动的格子Boltzmann曲边界处理新格式.  , 2017, 66(11): 114701. doi: 10.7498/aps.66.114701
    [6] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟.  , 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [7] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟.  , 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [8] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟.  , 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [10] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟.  , 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究.  , 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟.  , 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流.  , 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  3703
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2022-12-01
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回
Baidu
map