搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多普勒非对称空间外差光谱技术的多普勒测速仿真

况银丽 方亮 彭翔 程欣 张辉 刘恩海

引用本文:
Citation:

基于多普勒非对称空间外差光谱技术的多普勒测速仿真

况银丽, 方亮, 彭翔, 程欣, 张辉, 刘恩海

Simulation of Doppler velocity measurement based on Doppler asymmetric space heterodyne spectroscopy

Kuang Yin-Li, Fang Liang, Peng Xiang, Cheng Xin, Zhang Hui, Liu En-Hai
PDF
导出引用
  • 阐述了多普勒非对称空间外差光谱仪用于被动式多普勒测速的基本原理,通过综合考虑干涉条纹对比度和仪器测速灵敏度等关键因素,建立了效率函数,分别针对高斯线型和洛伦兹线型发射谱线,从理论上推导了最优单臂偏置量的选择依据,并以高斯线型目标谱线为例进行了仿真验证.同时,提出了一种基于部分干涉条纹反演多普勒速度的数据处理方法,简化了多谱线目标源的数据处理过程.结合自适应频率跟踪算法对单谱线目标源和多谱线目标源进行了仿真比较,仿真结果表明,在不考虑噪声的情况下,该方法针对多谱线目标源的多普勒测速最大绝对误差在0.004 m/s以内,与针对单谱线目标源的处理精度相当,可以满足实际应用的精度要求.
    Doppler asymmetric spatial heterodyne spectroscopy (DASH) technique with the advantages of high spectral resolution and high phase sensitivity can be considered as a combination of the spatial heterodyne spectroscopy (SHS) technique and the Michelson interferometer technique, which is very suitable for high-precision passive measurement of Doppler velocity. Since a larger optical path difference offset in one of the spectrometer arms corresponds to a higher phase shift sensitivity while suffering a lower contrast of the interferogram, there is an optimum path difference offset for measuring the phase shift and thus the Doppler shift is most sensitive. By comprehensively considering the trade-off between the contrast and the phase shift sensitivity of the interferogram, in this paper we carry out theoretical analysis on the optimum path difference offset. Based on the efficiency function which is defined as the product of the optical path difference and the contrast of the interferogram, the mathematical expressions of the optimum path difference offset for the Gaussian and Lorentz type emission spectral lines are theoretically deduced, respectively. In order to verify these two mathematical expressions, a simulation analysis about the phase shifts of the interference fringes for a single Gaussian type emission spectral line is carried out. The simulation result is consistent with the theoretical value calculated by the deduced mathematical expression. In addition, concerning the complexity of the traditional data processing method for resolving the Doppler velocities of multiple spectral lines, a simplified data processing method based on partial interference fringes is proposed. In general, a single spectral line should be distinguished and isolated from multiple spectral lines in the traditional data processing method. If the distribution of the spectral lines in the passband is too dense, a DASH spectrometer with high enough spectral resolution will be needed. The proposed processing method, retrieving the Doppler velocity from multiple spectral lines without isolating a single line in frequency domain, can not only effectively reduce the calculation of data processing, but also lower the requirement for the spectral resolution of the DASH spectrometer. Combining it with the adaptive frequency-tracing algorithm, the simulation calculations of the Doppler velocity measurement process of the single and multiple spectral lines are conducted. The results show that without taking the noise into account, the maximum resolving errors derived from the proposed data processing method for single and multiple spectral lines are similar, both within 0.005 m/s. It indicates that the proposed data processing method can fully meet the accuracy requirement of practical application and shows the prospect of wide applications in the field of passive Doppler velocity measurement.
      通信作者: 方亮, fangl@ioe.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB744204)和国家自然科学基金(批准号:61501429)资助的课题.
      Corresponding author: Fang Liang, fangl@ioe.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB744204) and the National Natural Science Foundation of China (Grant No. 61501429).
    [1]

    Jiang M D, Xiao D, Zhu Y T 2012 Prog. Astron. 30 246 (in Chinese) [姜明达, 肖东, 朱永田 2012 天文学进展 30 246]

    [2]

    Pepe F, Mayor M, Delabre B, Kohler D, Lacroix D, Queloz D, Udry S, Benz W, Bertaux J L, Sivan J P 2000 Proceedings of the Astronomical Telescopes and Instrumentation Munich, Germany, August 16, 2000 p582

    [3]

    Rupprecht G, Pepe F, Mayor M, et al. 2004 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Glasgow, United Kingdom, September 30, 2004 p148

    [4]

    Zhao F, Wang H J, Zhao G, Wang L, Liu Y J 2015 Astron. Res. Technol. 12 117 (in Chinese) [赵斐, 王汇娟, 赵刚, 王靓, 刘玉娟 2015 天文研究与技术 12 117]

    [5]

    Perruchot S, Kohler D, Bouchy F, et al. 2008 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Marseille, France, July 9, 2008 p70140J

    [6]

    Vogt S S, Allen S L, Bigelow B C, et al. 1994 Proceedings of the 1994 Symposium on Astronomical Telescopes and Instrumentation for the 21st Century Kailua, United States, June 1, 1994 p362

    [7]

    Mégevand D, Zerbi F M, Cabral A, et al. 2012 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Amsterdam, Netherlands, September 24, 2012 p84461R

    [8]

    Wang Q M, Zhang Y M 2006 J. Optoelectronics · Laser 17 179 (in Chinese) [王青梅, 张以谟 2006 光电子· 激光 17 179]

    [9]

    Chang L 2007 M. S. Thesis (Kunming: Yunnan Observatories, Chinese Academy of Sciences) (in Chinese) [常亮 2007 硕士学位论文 (昆明:中国科学院云南天文台) ]

    [10]

    Shepherd G G, Thuillier G, Gault W A, Solheim B H, Hersom C, Alunni J M, Brun J F, Brune S, Charlot P, Cogger L L 1993 J. Geophys. Res. 98 10725

    [11]

    Gault W A, Brown S, Moise A, Liang D, Sellar G, Shepherd G G, Wimperis J 1996 Appl. Opt. 35 2913

    [12]

    Gao H, Tang Y, Hua D, Liu H, Cao X, Duan X, Jia Q, Qu O, Wu Y 2013 Appl. Opt. 52 8650

    [13]

    Harlander J, Reynolds R J, Roesler F L 1992 Astophys. J. 396 730

    [14]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [15]

    Englert C R, Harlander J M, Cardon J G, Roesler F L 2004 Appl. Opt. 43 6680

    [16]

    Englert C R, Harlander J M 2006 Appl. Opt. 45 4583

    [17]

    Englert C R, Stevens M H, Siskind D E, Babcock D D, Harlander J M 2006 Proceedings of the SPIE Optics and Photon. San Diego, United States, September 1, 2006 p63030T

    [18]

    Englert C R, Babcock D D, Harlander J M 2007 Appl. Opt. 46 7297

    [19]

    Peng X, Zhang W 2017 Acta Photon. Sin. 46 0311003 (in Chinese) [彭翔, 张嵬 2017 光子学报 46 0311003]

    [20]

    Mosser B, Maillard J P, Bouchy F 2003 PASP 115 990

    [21]

    Wang L 2007 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese) [汪丽 2007 博士学位论文 (西安: 中国科学院西安光学精密机械研究所) ]

    [22]

    Xun J P 2008 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [郧建平 2008 博士学位论文 (武汉:华中科技大学) ]

    [23]

    He J, Zhang C M, Tang Y H, Zhao B C 2005 Acta Opt. Sin. 25 577 (in Chinese) [贺健, 张淳民, 唐远河, 赵葆常 2005 光学学报 25 577]

  • [1]

    Jiang M D, Xiao D, Zhu Y T 2012 Prog. Astron. 30 246 (in Chinese) [姜明达, 肖东, 朱永田 2012 天文学进展 30 246]

    [2]

    Pepe F, Mayor M, Delabre B, Kohler D, Lacroix D, Queloz D, Udry S, Benz W, Bertaux J L, Sivan J P 2000 Proceedings of the Astronomical Telescopes and Instrumentation Munich, Germany, August 16, 2000 p582

    [3]

    Rupprecht G, Pepe F, Mayor M, et al. 2004 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Glasgow, United Kingdom, September 30, 2004 p148

    [4]

    Zhao F, Wang H J, Zhao G, Wang L, Liu Y J 2015 Astron. Res. Technol. 12 117 (in Chinese) [赵斐, 王汇娟, 赵刚, 王靓, 刘玉娟 2015 天文研究与技术 12 117]

    [5]

    Perruchot S, Kohler D, Bouchy F, et al. 2008 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Marseille, France, July 9, 2008 p70140J

    [6]

    Vogt S S, Allen S L, Bigelow B C, et al. 1994 Proceedings of the 1994 Symposium on Astronomical Telescopes and Instrumentation for the 21st Century Kailua, United States, June 1, 1994 p362

    [7]

    Mégevand D, Zerbi F M, Cabral A, et al. 2012 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Amsterdam, Netherlands, September 24, 2012 p84461R

    [8]

    Wang Q M, Zhang Y M 2006 J. Optoelectronics · Laser 17 179 (in Chinese) [王青梅, 张以谟 2006 光电子· 激光 17 179]

    [9]

    Chang L 2007 M. S. Thesis (Kunming: Yunnan Observatories, Chinese Academy of Sciences) (in Chinese) [常亮 2007 硕士学位论文 (昆明:中国科学院云南天文台) ]

    [10]

    Shepherd G G, Thuillier G, Gault W A, Solheim B H, Hersom C, Alunni J M, Brun J F, Brune S, Charlot P, Cogger L L 1993 J. Geophys. Res. 98 10725

    [11]

    Gault W A, Brown S, Moise A, Liang D, Sellar G, Shepherd G G, Wimperis J 1996 Appl. Opt. 35 2913

    [12]

    Gao H, Tang Y, Hua D, Liu H, Cao X, Duan X, Jia Q, Qu O, Wu Y 2013 Appl. Opt. 52 8650

    [13]

    Harlander J, Reynolds R J, Roesler F L 1992 Astophys. J. 396 730

    [14]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [15]

    Englert C R, Harlander J M, Cardon J G, Roesler F L 2004 Appl. Opt. 43 6680

    [16]

    Englert C R, Harlander J M 2006 Appl. Opt. 45 4583

    [17]

    Englert C R, Stevens M H, Siskind D E, Babcock D D, Harlander J M 2006 Proceedings of the SPIE Optics and Photon. San Diego, United States, September 1, 2006 p63030T

    [18]

    Englert C R, Babcock D D, Harlander J M 2007 Appl. Opt. 46 7297

    [19]

    Peng X, Zhang W 2017 Acta Photon. Sin. 46 0311003 (in Chinese) [彭翔, 张嵬 2017 光子学报 46 0311003]

    [20]

    Mosser B, Maillard J P, Bouchy F 2003 PASP 115 990

    [21]

    Wang L 2007 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese) [汪丽 2007 博士学位论文 (西安: 中国科学院西安光学精密机械研究所) ]

    [22]

    Xun J P 2008 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [郧建平 2008 博士学位论文 (武汉:华中科技大学) ]

    [23]

    He J, Zhang C M, Tang Y H, Zhao B C 2005 Acta Opt. Sin. 25 577 (in Chinese) [贺健, 张淳民, 唐远河, 赵葆常 2005 光学学报 25 577]

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法.  , 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] 李文文, 惠宁菊, 李存霞, 刘洋河, 方妍, 李凌青, 王彦龙, 唐远河. 多普勒非对称空间外差仪探测高层大气风速的三种方法比较研究.  , 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292
    [3] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图. 激光外差光谱仪模拟风场探测.  , 2022, 71(7): 074204. doi: 10.7498/aps.71.20211252
    [4] 彭翔, 刘恩海, 田书林, 方亮. 基于多普勒非对称空间外差光谱测速的复合光程差相移解算方法.  , 2022, 71(24): 240601. doi: 10.7498/aps.71.20221469
    [5] 孙静静, 张磊, 甄胜来, 曹志刚, 张国生, 俞本立. 深海原位激光多普勒测速系统.  , 2021, 70(21): 214205. doi: 10.7498/aps.70.20210367
    [6] 曹自强, 赛斌, 吕欣. 行人跟踪算法及应用综述.  , 2020, 69(8): 084203. doi: 10.7498/aps.69.20191721
    [7] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [8] 刘雄国, 邓力, 胡泽华, 李瑞, 付元光, 李刚, 王佳. JMCT程序在线多普勒展宽研究.  , 2016, 65(9): 092501. doi: 10.7498/aps.65.092501
    [9] 张琪, 乔玉坤, 孔祥玉, 司小胜. 随机摄动强跟踪粒子滤波算法.  , 2014, 63(11): 110505. doi: 10.7498/aps.63.110505
    [10] 周杰, 王亚林, 菊池久和. 三维空间域多普勒功率谱及其多天线系统性能.  , 2014, 63(24): 240507. doi: 10.7498/aps.63.240507
    [11] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应.  , 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [12] 沈法华, 孙东松, 刘成林, 仇成群, 舒志峰. 基于单Fabry-Perot标准具的双频率多普勒激光雷达数据反演技术.  , 2013, 62(22): 220702. doi: 10.7498/aps.62.220702
    [13] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究.  , 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [14] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像.  , 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [15] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法.  , 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [16] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法.  , 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [17] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型.  , 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [18] 左战春, 孙 江, 吴令安, 傅盘铭. 消多普勒三光子共振六波混频.  , 2006, 55(3): 1186-1190. doi: 10.7498/aps.55.1186
    [19] 罗 明, 毕志毅, 陈扬骎, 马龙生. 边带非对称性对调制转移光谱中心频率的影响.  , 1999, 48(10): 1845-1851. doi: 10.7498/aps.48.1845
    [20] 傅盘铭. 多普勒系统中简并四波混频的饱和效应.  , 1984, 33(7): 927-934. doi: 10.7498/aps.33.927
计量
  • 文章访问数:  5560
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-04-22
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map