-
研究界面动力学对定向凝固中深胞晶形态稳定性的影响. 应用多重变量法和匹配渐近法, 通过寻找系统的模式解, 导出了胞晶界面扰动振幅的变化率满足的色散关系, 得到了界面形态的量子化条件. 结果表明, 考虑了界面动力学参数的深胞晶生长的定向凝固系统有两种整体不稳定性机制, 整体振荡不稳定机制和低频不稳定性. 稳定性分析表明, 界面稳定性参数
$\varepsilon$ 与胞晶相对参数$ {\lambda }_{0} $ 有关, 低阶时界面动力学参数$ {M}_{\text{*}} $ 越大, 中性模式产生强振荡的枝晶结构的整体波动不稳定性的稳定区域越大.The effect of interface kinetics on the stability of deep cell morphology in directional solidification is studied. By using the multiple variable method and the matching asymptotic methodandby finding the mode solution of the system,the dispersion relation satisfied by the change rate of the disturbance amplitude of the cell-crystal interface is derived , and the quantization condition of the interface morphology is obtained. The results show that there are two global instability mechanisms in the directional solidification system with considering the growth of deep cell crystal with interfacial dynamic parameters : global oscillation instability mechanism and low-frequency instability. The stability analysis shows that the interface stability parameter$\mathrm{\varepsilon }$ is related to the cell relative parameter$ {\mathrm{\lambda }}_{0} $ , and thatthe larger the interface dynamic parameter$ {M}_{\text{*}} $ , the larger the stable region of the overall fluctuation instability of the dendrite structure in the overall oscillation modeis.-
Keywords:
- directional solidification /
- deep cellular crystal growth /
- interface kinetics /
- morphological stability
[1] Peng P, Li S Y, Zheng W C, Lu L, Zhou S D 2021 Trans. Nonferrous Met. Soc. China 31 3096Google Scholar
[2] Mullins W W, Sekerka R F 1963 Appl. Phys. 34 323Google Scholar
[3] Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp345–352
[4] Nash G E, Glicksman M E 1974 ScriptaMetal. 8 xxixGoogle Scholar
[5] KruskalMD, Segur H 1991 Stud. Appl. Math. 85 129Google Scholar
[6] Xu J J 1991 Phys. Rev. A. 43 930Google Scholar
[7] Xu J J 1991 Eur. J. Appl. Math. 2 105Google Scholar
[8] Pocheau A, Georgelin M 1999 J. Cryst. Growth 206 215Google Scholar
[9] Ding G, Huang W, Xin L, Zhou Y 1997 J. Cryst. Growth 177 281Google Scholar
[10] Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157Google Scholar
[11] Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Mater. Trans. A. 22 585
[12] Li J F, Zhou Y H 2005 中国科学: E辑 35 10Google Scholar
李金富, 周尧和 2005 Science in China(Series E) 35 10Google Scholar
[13] Tan Y, Wang H 2012 J. Mater. Sci. 47 5308Google Scholar
[14] 蒋晗, 陈明文, 王涛, 王自东 2017 66 10Google Scholar
Jiang H, Chen M W, Wang T, Wang Z D 2017 Acta Phys. Sin. 66 10Google Scholar
[15] Chen M W, Wang Z D, Xu J J 2008 Sci. China Ser. E 51 225Google Scholar
[16] 陈明文, 倪锋, 王艳林, 王自东, 谢建新 2011 60 068103Google Scholar
Chen M W, Ni F, Wang Y L, Wang Z D, Xie J X 2011 Acta Phys. Sin. 60 068103Google Scholar
[17] 郭洪民, 杨湘杰 2008 中国有色金属学报 18 651Google Scholar
Guo H M, Yang X J 2008 Chin. J. Nonferrous Met. 18 651Google Scholar
[18] 统雷雷, 林鑫, 赵力宁, 黄卫东 2009 金属学报 45 737Google Scholar
Tong L L, Lin X, Zhao L N, Huang W D 2009 ActaMetall. Sin. 45 737Google Scholar
[19] Pelcé P 1988 Dynamics of Curved Fronts(New York: Academic. Press) pp155–174
[20] Chen Y Q, Xu J J 2011 Phys. Rev. E 83 041601Google Scholar
[21] Xu J J, Chen Y Q 2011 Phys. Rev. E 83 061605Google Scholar
-
图 1 基于Saffmen-Taylor解构造的曲线坐标系
$ \left(\xi , \eta \right) $ [20]Fig. 1. Curve coordinate system
$ \left(\xi , \eta \right) $ based on Saffmen-Taylor solution.图 2 首级近似与一级近似的GTW-S中性模式曲线. 参数分别为
$ n=0 $ ,$ {\mathrm{\lambda }}_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}=0.14485\times {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}=0.5388\times {10}^{-2}$ ,$ M=0.09552 $ ,$ E=0.25 $ ,$ {m}_{\text{*}}=1 $ Fig. 2. The neutral curves of GTW-S-modes with zero-th-order approximation and first-order approximation for the case
$ n=0 $ ,$ {\lambda }_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}=0.14485\times {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}=0.5388\times {10}^{-2}$ ,$ M=0.09552 $ ,$ E=0.25 $ ,${m}_{\text{*}}=1$ 图 3 一级近似下的GTW-S中性模式曲线. 参数分别为
$ n=0, 1, 2 $ ,$ {\mathrm{\lambda }}_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}=0.14485\times {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}=0.5388\times {10}^{-2}$ ,$ M=0.09552 $ ,$ E=0.25 $ ,$ {m}_{\text{*}}=1 $ Fig. 3. The neutral curves of GTW-S-modes with first-order approximation for the case
$ n=\mathrm{0, 1}, 2 $ ,$ {\mathrm{\lambda }}_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}=0.14485\times {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}=0.5388\times {10}^{-2}$ ,$ M= $ $ 0.09552 $ ,$ E=0.25 $ ,$ {m}_{\text{*}}=1 $ .图 4 一级近似下的GTW-S中性模式曲线. 参数分别为
$ E = 0.1, 0.25 $ ,$ n = 0 $ ,$ {\mathrm{\lambda }}_{G} = 0.3991 $ ,$ \kappa = 0.29 $ ,$ {G}_{\mathrm{c}} = 0.14485\times $ $ {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}=0.5388\times {10}^{-2}$ ,$ M=0.09552 $ ,$ {m}_{\text{*}}=1 $ Fig. 4. The neutral curves of GTW-S-modes with first-order approximation for the case of
$ E=0.1, 0.25 $ ,$ n=0 $ ,$ {\mathrm{\lambda }}_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}=0.14485\times {10}^{-4} $ ,${{\varepsilon }}_{\mathrm{c}}=0.5388\times $ $ {10}^{-2}$ ,$ M=0.09552 $ ,${m}_{\text{*}}=1$ 图 5 一级近似下的GTW-S中性模式曲线. 参数分别为
$ {m}_{\text{*}}=1, 5, 10 $ ,$ E=0.25 $ ,$ {\mathrm{\lambda }}_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}= $ $ 0.14485\times {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}=0.5388\times {10}^{-2}$ ,$ M=0.09552 $ Fig. 5. The neutral curves of GTW-S-modes with first-order approximation for the case of
$ {m}_{\text{*}}=1, 5, 10 $ ,$ E=0.25 $ ,$ n=0 $ ,$ {\lambda }_{G}=0.3991 $ ,$ \kappa =0.29 $ ,$ {G}_{\mathrm{c}}=0.14485\times {10}^{-4} $ ,${\varepsilon }_{\mathrm{c}}= $ $ 0.5388\times {10}^{-2}$ ,$M=0.09552$ -
[1] Peng P, Li S Y, Zheng W C, Lu L, Zhou S D 2021 Trans. Nonferrous Met. Soc. China 31 3096Google Scholar
[2] Mullins W W, Sekerka R F 1963 Appl. Phys. 34 323Google Scholar
[3] Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp345–352
[4] Nash G E, Glicksman M E 1974 ScriptaMetal. 8 xxixGoogle Scholar
[5] KruskalMD, Segur H 1991 Stud. Appl. Math. 85 129Google Scholar
[6] Xu J J 1991 Phys. Rev. A. 43 930Google Scholar
[7] Xu J J 1991 Eur. J. Appl. Math. 2 105Google Scholar
[8] Pocheau A, Georgelin M 1999 J. Cryst. Growth 206 215Google Scholar
[9] Ding G, Huang W, Xin L, Zhou Y 1997 J. Cryst. Growth 177 281Google Scholar
[10] Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157Google Scholar
[11] Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Mater. Trans. A. 22 585
[12] Li J F, Zhou Y H 2005 中国科学: E辑 35 10Google Scholar
李金富, 周尧和 2005 Science in China(Series E) 35 10Google Scholar
[13] Tan Y, Wang H 2012 J. Mater. Sci. 47 5308Google Scholar
[14] 蒋晗, 陈明文, 王涛, 王自东 2017 66 10Google Scholar
Jiang H, Chen M W, Wang T, Wang Z D 2017 Acta Phys. Sin. 66 10Google Scholar
[15] Chen M W, Wang Z D, Xu J J 2008 Sci. China Ser. E 51 225Google Scholar
[16] 陈明文, 倪锋, 王艳林, 王自东, 谢建新 2011 60 068103Google Scholar
Chen M W, Ni F, Wang Y L, Wang Z D, Xie J X 2011 Acta Phys. Sin. 60 068103Google Scholar
[17] 郭洪民, 杨湘杰 2008 中国有色金属学报 18 651Google Scholar
Guo H M, Yang X J 2008 Chin. J. Nonferrous Met. 18 651Google Scholar
[18] 统雷雷, 林鑫, 赵力宁, 黄卫东 2009 金属学报 45 737Google Scholar
Tong L L, Lin X, Zhao L N, Huang W D 2009 ActaMetall. Sin. 45 737Google Scholar
[19] Pelcé P 1988 Dynamics of Curved Fronts(New York: Academic. Press) pp155–174
[20] Chen Y Q, Xu J J 2011 Phys. Rev. E 83 041601Google Scholar
[21] Xu J J, Chen Y Q 2011 Phys. Rev. E 83 061605Google Scholar
计量
- 文章访问数: 3179
- PDF下载量: 38
- 被引次数: 0