搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相对流对定向凝固胞/枝晶间距的影响

王贤斌 林鑫 王理林 宇红雷 王猛 黄卫东

引用本文:
Citation:

液相对流对定向凝固胞/枝晶间距的影响

王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东

Influence of liquid flow on cellular and dendritic spacings

Wang Xian-Bin, Lin Xin, Wang Li-Lin, Yu Hong-Lei, Wang Meng, Huang Wei-Dong
PDF
导出引用
  • 采用类金属透明模型合金丁二腈-1.8 wt%丙酮(SCN-1.8 wt%Ace)合金, 研究了平行于生长界面前沿的液相对流对定向凝固胞/枝晶生长行为及胞/枝晶间距的影响. 对于胞晶生长, 在液相对流作用下, 其尖端将会出现分岔, 使得胞晶间距减小, 并且液相对流流速越大, 胞晶尖端分岔越明显, 胞晶组织越细小, 胞晶间距越小. 至于枝晶生长, 其生长行为与胞晶不同. 当抽拉速度较小时, 液相对流作用下枝晶两侧三次臂的生长速度将会超过枝晶尖端生长速度, 形成新的枝晶列, 使得枝晶一次间距减小, 并且液相对流流速越大枝晶一次间距越小; 当抽拉速度较大时, 液相对流作用下迎流侧二次臂生长发达,且会抑制上游枝晶生长, 使得枝晶一次间距增大, 并且液相对流越强枝晶一次间距越大.
    The cellular and dendritic formations are two kinds of typical morphology in the solidification, and there are many theoretical models and experimental researches on them. Most models and researches are based on purely diffusive transport mechanism. However, convection effects are of importance in the evolution of cellular and dendritic growth. Since the metal materials are not transparency and the researches on microstructure only after quenching, it is difficult to observe the dynamic microstructure evolution in real time. In this paper, the effect of liquid flow on the cellular and dendritic growth was investigated by the in-situ observation of SCN-1.8 wt% Ace transparent alloy during the directional solidification under the liquid flow. The cellular tip splitting is found in the presence of liquid flow and the cellular microstructure is smaller after the cellular tip splitting. The cellular spacing decreases as the flow rate becomes larger, but the spacing will become steady ultimately. At high growth rate the dendritic spacing increases with the increase of the flow rate, because the upstream side branches, which are accelerated by liquid flow, will suppress adjacent branches. But, at low growth rate the dendritic spacing decreases with the increase of the flow rate, because the lateral branches will exceed the tip of dendrite to form new dendrite by liquid flow.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB610402)和国家自然科学基金(批准号: 50971102, 50901061)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB610402), and the National Natural Science Foundation of China (Grant Nos. 50971102, 50901061).
    [1]

    Kurz W, Fisher D J 1986 Fundamentals of solidification (3rd Edn.) (Switzerland: Trans Tech Publications Ltd) p23

    [2]

    Billia B, Trivedi R 1993 Handbook of crystal growth (London: North-holland) p1007

    [3]

    Eshelman M A, Seetharaman V, Trivedi R 1988 Acta Metall. 36 1165

    [4]

    Suk M J, Park Y M, Kim Y D 2007 Scripta Mater. 57 985

    [5]

    Kaya H, Cadirli E, Keslioglu K, Marasli N 2005 J. Crstal. Growth 276 583

    [6]

    Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731

    [7]

    Laxmanan V 1998 Scipta Mater. 38 1289

    [8]

    Seetharaman V, Eshelman M A, Trivedi R 1988 Acta Metall. 30 1175

    [9]

    Gunduz M, Cadirli E 2002 Mater. Sci. Eng. A 327 167

    [10]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99

    [11]

    Hunt J D 1979 Solidification and Casting of Metals (London: Metals Society) p35

    [12]

    Kurz W, Fisher D J 1981 Acta Metall. 29 11

    [13]

    Trivedi R 1984 Metall. Trans. A 15 977

    [14]

    Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611

    [15]

    Lin X, Li Y M, Liu Z X, Li T, Huang W D 2001 Sci. Techn. Adv. Mater. 2 293

    [16]

    Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metall Sin. 29 147 (in Chinese) [刘山, 鲁德洋, 黄韬, 周尧和 1993 金属学报 29 147]

    [17]

    Trivedi R, Mazumder P, Tewari S N 2002 J. Cryst. Growth 222 365

    [18]

    Spinelli J E, Rosa D M, Ferreira I L 2004 Mater. Sci. Eng. A 383 271

    [19]

    Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱明芳, 杨朝蓉, 潘诗琰, 戴挺 2009 58 S285]

    [20]

    Shi Y F, Xu Q Y, Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2011 60 126101]

    [21]

    Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106 (in Chinese) [王建元, 翟薇, 金克新, 陈长乐 2011 60 098106]

    [22]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 58 6554]

  • [1]

    Kurz W, Fisher D J 1986 Fundamentals of solidification (3rd Edn.) (Switzerland: Trans Tech Publications Ltd) p23

    [2]

    Billia B, Trivedi R 1993 Handbook of crystal growth (London: North-holland) p1007

    [3]

    Eshelman M A, Seetharaman V, Trivedi R 1988 Acta Metall. 36 1165

    [4]

    Suk M J, Park Y M, Kim Y D 2007 Scripta Mater. 57 985

    [5]

    Kaya H, Cadirli E, Keslioglu K, Marasli N 2005 J. Crstal. Growth 276 583

    [6]

    Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731

    [7]

    Laxmanan V 1998 Scipta Mater. 38 1289

    [8]

    Seetharaman V, Eshelman M A, Trivedi R 1988 Acta Metall. 30 1175

    [9]

    Gunduz M, Cadirli E 2002 Mater. Sci. Eng. A 327 167

    [10]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99

    [11]

    Hunt J D 1979 Solidification and Casting of Metals (London: Metals Society) p35

    [12]

    Kurz W, Fisher D J 1981 Acta Metall. 29 11

    [13]

    Trivedi R 1984 Metall. Trans. A 15 977

    [14]

    Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611

    [15]

    Lin X, Li Y M, Liu Z X, Li T, Huang W D 2001 Sci. Techn. Adv. Mater. 2 293

    [16]

    Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metall Sin. 29 147 (in Chinese) [刘山, 鲁德洋, 黄韬, 周尧和 1993 金属学报 29 147]

    [17]

    Trivedi R, Mazumder P, Tewari S N 2002 J. Cryst. Growth 222 365

    [18]

    Spinelli J E, Rosa D M, Ferreira I L 2004 Mater. Sci. Eng. A 383 271

    [19]

    Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱明芳, 杨朝蓉, 潘诗琰, 戴挺 2009 58 S285]

    [20]

    Shi Y F, Xu Q Y, Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2011 60 126101]

    [21]

    Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106 (in Chinese) [王建元, 翟薇, 金克新, 陈长乐 2011 60 098106]

    [22]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 58 6554]

  • [1] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响.  , 2022, 71(16): 168101. doi: 10.7498/aps.71.20220322
    [2] 方辉, 薛桦, 汤倩玉, 张庆宇, 潘诗琰, 朱鸣芳. 温度梯度区域熔化作用下熔池迁移的元胞自动机模拟.  , 2019, 68(4): 048102. doi: 10.7498/aps.68.20181587
    [3] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响.  , 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [4] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响.  , 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [5] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶.  , 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [6] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化.  , 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [7] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响.  , 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [8] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响.  , 2016, 65(9): 096803. doi: 10.7498/aps.65.096803
    [9] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道.  , 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [10] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律.  , 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [11] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响.  , 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [12] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟.  , 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [13] 白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东. 抽拉速度对SCN-DC共晶生长形貌的影响.  , 2013, 62(21): 218103. doi: 10.7498/aps.62.218103
    [14] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响.  , 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [15] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究.  , 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [16] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究.  , 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [17] 王建元, 陈长乐, 翟薇, 金克新. 切向流动作用下SCN-3wt% H2O枝晶定向生长过程研究.  , 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [18] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析.  , 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [19] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟.  , 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [20] 杨 森, 苏云鹏, 黄卫东, 周尧和. 激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征.  , 2003, 52(1): 81-86. doi: 10.7498/aps.52.81
计量
  • 文章访问数:  6094
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-25
  • 修回日期:  2012-11-16
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map