搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产长锥形光纤实现400 W单频单模激光输出

安毅 潘志勇 杨欢 黄良金 马鹏飞 闫志平 姜宗福 周朴

引用本文:
Citation:

国产长锥形光纤实现400 W单频单模激光输出

安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴

400-W single-mode single-frequency laser output from homemade tapered fiber

An Yi, Pan Zhi-Yong, Yang Huan, Huang Liang-Jin, Ma Peng-Fei, Yan Zhi-Ping, Jiang Zong-Fu, Zhou Pu
PDF
HTML
导出引用
  • 高功率单频光纤激光在引力波探测、非线性频率变换等领域有重要的应用需求, 其输出功率的提升面临横向模式不稳定和非线性效应等因素带来的技术挑战, 而长锥形增益光纤具有综合抑制横向模式不稳定效应和非线性效应的潜力. 为进一步提升全光纤结构单频光纤激光器的输出功率, 国防科技大学自主研制了一段长度为2.2 m的长锥形掺镱双包层光纤, 其输入端纤芯和内包层直径分别为30.3 μm和245 μm, 输出端纤芯和内包层直径为49.3 μm和404 μm. 基于该光纤, 采用前向泵浦的方式搭建了一个全光纤结构的单频主振荡功率放大系统. 其中种子激光的中心波长为1064 nm, 输出功率为30 mW. 该系统实现了中心波长为1064 nm、功率超过400 W的单频激光输出, 斜率效率为81.7%, 功率400 W时光束质量因子(M 2)为1.29. 系统输出功率的进一步提升受限于横向模式不稳定效应. 据可查询文献, 这是目前基于国产增益光纤实现的单频单模光纤激光器最高输出功率. 该结果表明, 长锥形光纤在实现单频光纤激光器高功率、高光束质量输出方面极具潜力, 通过光纤参数和实验结构的进一步优化有望实现更高功率水平的单频单模激光输出.
    In recent years, the high-power single-frequency fiber lasers have developed rapidly, and they have been used in nonlinear frequency conversion and gravitational wave detection. The main factors limiting the output power of single-frequency fiber lasers are the nonlinear effect and transverse mode instability (TMI) effect. In general, large-core fibers can mitigate nonlinear effects while small-core fibers help to suppress the TMI effect. Owing to the core diameter varying in the longitudinal direction, tapered double clad fiber (T-DCF) is a promising solution to simultaneously suppress the nonlinearity and TMI effects. In the present study, we have fabricated a piece of 2.2-m-long Ytterbium-doped T-DCF. The core diameter and the cladding diameter of this fiber vary gradually from 30.3 μm to 49.3 μm and from 245 μm to 404 μm, respectively. Using this homemade fiber, we constructe an all-fiberized single-frequency master oscillator power amplifier system, which is pumped by laser diodes with a central wavelength of 976 nm. The seed of the system has a central wavelength of 1064 nm, and output power of 30 mW. The T-DCF is coiled on a piece of cooling plate, whose output end is cleaved at a 8° angle. The laser is output to free space and collimated by a free-space collimator. After the collimator, dichroic mirror is utilized to strip out the residual pump power for measuring power, spectrum, time-domain signal and beam quality. The output power increases linearly with the pumping power increasing. When the pumping power is 502 W, the output power reaches 400 W. And there is no stimulated Brillouin scattering (SBS) nor TMI under the power level. The corresponding slope efficiency is 81.7% while the M2 is measured to be 1.29, exhibiting the single-mode output characteristic of the system. When the output power is further increased to 418 W, the TMI effect is observed, which limits further the power scaling of the single-mode output. To the best of our knowledge, this is the highest output power of single-frequency fiber laser based on home-made gain fibers. The results indicate that T-DCFs can simultaneously suppress the nonlinearity and TMI, thus providing a useful reference for further power scaling of single-frequency fiber lasers. Higher output power is expected by optimizing the parameters of T-DCF and the structure of system.
      通信作者: 黄良金, hlj203@nudt.edu.cn ; 马鹏飞, shandapengfei@126.com
    • 基金项目: 国家自然科学基金(批准号: 61805280, 62035015, 61806217)、国防科技大学学校科研计划(批准号: ZK19-07)和脉冲功率激光技术国家重点实验室主任基金(批准号: SKL2020ZR07)资助的课题
      Corresponding author: Huang Liang-Jin, hlj203@nudt.edu.cn ; Ma Peng-Fei, shandapengfei@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805280, 62035015, 61806217), the Science Research Plan of National University of Defense Technology, China (Grant No. ZK19-07), and the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2020ZR07)
    [1]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [2]

    杨昌盛, 岑旭, 徐善辉, 杨中民 2021 光学学报 41 0114002Google Scholar

    Yang C S, Cen X, Xu S H, Yang Z M 2021 Acta Opt. Sin. 41 0114002Google Scholar

    [3]

    来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星 周朴 2020 强激光与粒子束 32 121001

    Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Las. Part. Beam. 32 121001

    [4]

    Chang H X, Chang Q, Xi J C, Hou T Y, Su R T, Ma P F, Wu J, Li C, Jiang M, Ma Y X, Zhou P 2020 Photonics Res. 8 1943Google Scholar

    [5]

    Dong J Y, Zeng X, Cui S Z, Zhou J Q, Feng Y 2019 Opt. Express 27 35362Google Scholar

    [6]

    Trikshev A I, Kurkov A S, Tsvetkov V B, Filatova S A, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O G 2013 Laser Phys. Lett. 10 1

    [7]

    Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar

    [8]

    Ma P F, Zhou P, Ma Y X, Su R T, Xu X J, Liu Z J 2013 Appl. Opt. 52 4854Google Scholar

    [9]

    Robin C, Dajani I, Pulford B 2014 Opt. Lett. 39 666Google Scholar

    [10]

    Huang L, Wu H S, Li R X, Li L, Ma P F, Wang X L, Leng J Y, Zhou P 2016 Opt. Lett. 42 1

    [11]

    Huang L, Lai W C, Ma P F, Wang J, Su R T, Ma Y X, Li C, Zhi D, Zhou P 2020 Opt. Lett. 45 4001Google Scholar

    [12]

    Lai W C, Ma P F, Liu W, Huang L, Li C, Ma Y X, Zhou P 2020 Opt. Express 28 20908Google Scholar

    [13]

    Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523Google Scholar

    [14]

    Dixneuf C, Guiraud G, Bardin Y V, Rosa Q, Santarelli G 2020 Opt. Express 28 10960Google Scholar

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1

    [16]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [17]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum. Electron. 24 1

    [18]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2015 Photonics Res. 3 86Google Scholar

    [19]

    Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O 2008 Opt. Express 16 1929Google Scholar

    [20]

    Trikshev A, Kurkov A, Tsvetkov V, Filatova S, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O 2013 Laser Phys. Lett. 10 065101Google Scholar

    [21]

    Roy V, Pare C, Labranche B, Laperle P, Desbiens L, Boivin M, Taillon Y 2017 Fiber Lasers XIV: Technology and Systems San Francisco, CA, January 30-February 2, 2017, p1008314

    [22]

    肖虎, 董小林, 周朴, 许晓军, 陈金宝 2011 强激光与粒子束 23 1437Google Scholar

    Xiao H, Dong X L, Zhou P, Xu X J, Chen J B 2011 High Power Las. Part. Beam. 23 1437Google Scholar

    [23]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar

    [24]

    王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理 2018 67 024205Google Scholar

    Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L, Pan R, Huang Y S, Tian J D, Li D, Yan P, Gong M L 2018 Acta Phys. Sin. 67 024205Google Scholar

    [25]

    林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 0315001Google Scholar

    Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jing F 2018 Chin. J. Las. 45 0315001Google Scholar

    [26]

    陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 0336001Google Scholar

    Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optic. Sin. 39 0336001Google Scholar

    [27]

    李学文, 于春雷, 胡丽丽, 沈辉, 全昭, 李秋瑞, 楼风光, 王孟, 张磊, 漆云凤, 何兵, 周军 2019 光学学报 39 0636001Google Scholar

    Li X W, Yu C L, Hu L L, Shen H, Quan Z, Li Q R, Lou F G, Wang M, Zhang L, Qi Y F, He B, Zhou J 2019 Acta Optic. Sin. 39 0636001Google Scholar

    [28]

    刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 69 184209Google Scholar

    Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 184209Google Scholar

    [29]

    张志伦, 张芳芳, 林贤峰, 、王世杰, 曹驰, 邢颍滨, 廖雷, 李进延 2020 69 234205Google Scholar

    Zhang Z L, Zhang F F, Lin X F, Wang S J, Cao C, Xing Y B, Liao L, Li J Y 2020 Acta Phys. Sin. 69 234205Google Scholar

    [30]

    She S F, Liu B, Chang C, Xu Y T, Xiao X S, Cui X X, Li Z, Zheng J K, Gao S, Zhang Y, Li Y Z, Zhou Z Y, Mei L, Hou C Q, Guo H T 2020 J. Lightwave Technol. 38 6924Google Scholar

    [31]

    安毅, 杨欢, 肖虎, 陈潇, 黄良金, 潘志勇, 王小林, 奚小明, 马鹏飞, 王泽锋, 周朴, 许晓军, 姜宗福, 陈金宝 2021 中国激光 48 0115002Google Scholar

    An Y, Yang H, Xiao H, Chen X, Huang L J, Pan Z Y, Wang X L, Xi X M, Ma P F, Wang Z F, Zhou P, Xu X J, Jiang Z F, Chen J B 2021 Chin. J. Las. 48 0115002Google Scholar

    [32]

    林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 060101Google Scholar

    Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jing F 2018 High Power Las. Part. Beam. 30 060101Google Scholar

    [33]

    Zhang F P, Lou Q H, Zhou J, Zhao H M, Dong J X, Wei Y R, He B, Li J Y, Chen W B, Zhu J Q, Wang Z J 2007 Chin. Opt. Lett. 5 060322

    [34]

    Dong X L, Xiao H, Xu S H, Pan Z Y, Ma Y X, Wang X L, Zhou P, Yang Z M 2011 Chin. Opt. Lett. 9 111404Google Scholar

  • 图 1  长锥形光纤小芯径均匀区的吸收谱

    Fig. 1.  Absorption spectrum of the small-core region of the long tapered fiber.

    图 2  基于长锥形双包层光纤搭建的单频光纤放大器的实验装置图

    Fig. 2.  Experimental setup of single frequency fiber amplifier based on tapered double clad fiber.

    图 3  不同输出功率下, 光电探测器接收光信号的时频域 (a)输出功率为400 W时的时域; (b) 输出功率为400 W时的频域; (c) 输出功率为418 W时的时域; (d) 输出功率为418 W时的频域; (e) 输出功率为434 W时的时域; (f) 输出功率为434 W时的频域

    Fig. 3.  The detected scattering light signals under different output power levels: (a) Time domain when output power reaches 400 W; (b) frequency domain when output power reaches 400 W; (c) time domain when output power reaches 418 W; (d) frequency domain when output power reaches 418 W; (e) time domain when output power reaches 434 W; (f) frequency domain when output power reaches 434 W.

    图 4  输出功率、回光功率随泵浦光功率的变化

    Fig. 4.  Output power and backward power versus pump power.

    图 5  种子光及经过主放大器后不同输出功率下的光谱 (a) 种子光; (b) 输出功率109 W; (c) 输出功率255 W; (d) 输出功率400 W

    Fig. 5.  Spectra of the seed light and the output laser with different power lever: (a) Seed light; (b) output power of 109 W; (c) output power of 255 W; (d) output power of 400 W.

    图 6  光束质量因子随输出功率的变化

    Fig. 6.  Beam quality factor versus output power.

    Baidu
  • [1]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [2]

    杨昌盛, 岑旭, 徐善辉, 杨中民 2021 光学学报 41 0114002Google Scholar

    Yang C S, Cen X, Xu S H, Yang Z M 2021 Acta Opt. Sin. 41 0114002Google Scholar

    [3]

    来文昌, 马鹏飞, 肖虎, 刘伟, 李灿, 姜曼, 许将明, 粟荣涛, 冷进勇, 马阎星 周朴 2020 强激光与粒子束 32 121001

    Lai W C, Ma P F, Xiao H, Liu W, Li C, Jiang M, Xu J M, Su R T, Leng J Y, Ma Y X, Zhou P 2020 High Power Las. Part. Beam. 32 121001

    [4]

    Chang H X, Chang Q, Xi J C, Hou T Y, Su R T, Ma P F, Wu J, Li C, Jiang M, Ma Y X, Zhou P 2020 Photonics Res. 8 1943Google Scholar

    [5]

    Dong J Y, Zeng X, Cui S Z, Zhou J Q, Feng Y 2019 Opt. Express 27 35362Google Scholar

    [6]

    Trikshev A I, Kurkov A S, Tsvetkov V B, Filatova S A, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O G 2013 Laser Phys. Lett. 10 1

    [7]

    Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar

    [8]

    Ma P F, Zhou P, Ma Y X, Su R T, Xu X J, Liu Z J 2013 Appl. Opt. 52 4854Google Scholar

    [9]

    Robin C, Dajani I, Pulford B 2014 Opt. Lett. 39 666Google Scholar

    [10]

    Huang L, Wu H S, Li R X, Li L, Ma P F, Wang X L, Leng J Y, Zhou P 2016 Opt. Lett. 42 1

    [11]

    Huang L, Lai W C, Ma P F, Wang J, Su R T, Ma Y X, Li C, Zhi D, Zhou P 2020 Opt. Lett. 45 4001Google Scholar

    [12]

    Lai W C, Ma P F, Liu W, Huang L, Li C, Ma Y X, Zhou P 2020 Opt. Express 28 20908Google Scholar

    [13]

    Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523Google Scholar

    [14]

    Dixneuf C, Guiraud G, Bardin Y V, Rosa Q, Santarelli G 2020 Opt. Express 28 10960Google Scholar

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1

    [16]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [17]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum. Electron. 24 1

    [18]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2015 Photonics Res. 3 86Google Scholar

    [19]

    Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O 2008 Opt. Express 16 1929Google Scholar

    [20]

    Trikshev A, Kurkov A, Tsvetkov V, Filatova S, Kertulla J, Filippov V, Chamorovskiy Y K, Okhotnikov O 2013 Laser Phys. Lett. 10 065101Google Scholar

    [21]

    Roy V, Pare C, Labranche B, Laperle P, Desbiens L, Boivin M, Taillon Y 2017 Fiber Lasers XIV: Technology and Systems San Francisco, CA, January 30-February 2, 2017, p1008314

    [22]

    肖虎, 董小林, 周朴, 许晓军, 陈金宝 2011 强激光与粒子束 23 1437Google Scholar

    Xiao H, Dong X L, Zhou P, Xu X J, Chen J B 2011 High Power Las. Part. Beam. 23 1437Google Scholar

    [23]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar

    [24]

    王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理 2018 67 024205Google Scholar

    Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L, Pan R, Huang Y S, Tian J D, Li D, Yan P, Gong M L 2018 Acta Phys. Sin. 67 024205Google Scholar

    [25]

    林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 0315001Google Scholar

    Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jing F 2018 Chin. J. Las. 45 0315001Google Scholar

    [26]

    陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 0336001Google Scholar

    Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optic. Sin. 39 0336001Google Scholar

    [27]

    李学文, 于春雷, 胡丽丽, 沈辉, 全昭, 李秋瑞, 楼风光, 王孟, 张磊, 漆云凤, 何兵, 周军 2019 光学学报 39 0636001Google Scholar

    Li X W, Yu C L, Hu L L, Shen H, Quan Z, Li Q R, Lou F G, Wang M, Zhang L, Qi Y F, He B, Zhou J 2019 Acta Optic. Sin. 39 0636001Google Scholar

    [28]

    刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 69 184209Google Scholar

    Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 184209Google Scholar

    [29]

    张志伦, 张芳芳, 林贤峰, 、王世杰, 曹驰, 邢颍滨, 廖雷, 李进延 2020 69 234205Google Scholar

    Zhang Z L, Zhang F F, Lin X F, Wang S J, Cao C, Xing Y B, Liao L, Li J Y 2020 Acta Phys. Sin. 69 234205Google Scholar

    [30]

    She S F, Liu B, Chang C, Xu Y T, Xiao X S, Cui X X, Li Z, Zheng J K, Gao S, Zhang Y, Li Y Z, Zhou Z Y, Mei L, Hou C Q, Guo H T 2020 J. Lightwave Technol. 38 6924Google Scholar

    [31]

    安毅, 杨欢, 肖虎, 陈潇, 黄良金, 潘志勇, 王小林, 奚小明, 马鹏飞, 王泽锋, 周朴, 许晓军, 姜宗福, 陈金宝 2021 中国激光 48 0115002Google Scholar

    An Y, Yang H, Xiao H, Chen X, Huang L J, Pan Z Y, Wang X L, Xi X M, Ma P F, Wang Z F, Zhou P, Xu X J, Jiang Z F, Chen J B 2021 Chin. J. Las. 48 0115002Google Scholar

    [32]

    林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 060101Google Scholar

    Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jing F 2018 High Power Las. Part. Beam. 30 060101Google Scholar

    [33]

    Zhang F P, Lou Q H, Zhou J, Zhao H M, Dong J X, Wei Y R, He B, Li J Y, Chen W B, Zhu J Q, Wang Z J 2007 Chin. Opt. Lett. 5 060322

    [34]

    Dong X L, Xiao H, Xu S H, Pan Z Y, Ma Y X, Wang X L, Zhou P, Yang Z M 2011 Chin. Opt. Lett. 9 111404Google Scholar

  • [1] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器.  , 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究.  , 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [3] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [4] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器.  , 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [5] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器.  , 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [6] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究.  , 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [7] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究.  , 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [8] 王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理. 国产光纤实现直接抽运全光纤化3000 W级激光输出.  , 2015, 64(16): 164204. doi: 10.7498/aps.64.164204
    [9] 沈骁, 邹辉, 郑锐林, 郑加金, 韦玮. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展.  , 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [10] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究.  , 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [11] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [12] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成.  , 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [13] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究.  , 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [14] 许将明, 冷进勇, 韩凯, 周朴, 侯静. 单频光纤拉曼放大器的实验研究.  , 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [15] 杨未强, 侯静, 宋锐, 刘泽金. 高功率光纤激光器二级抽运技术的理论分析.  , 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [16] 漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪. 128 W单频线偏振光纤放大器特性研究.  , 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [17] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器.  , 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [18] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究.  , 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [19] 张新陆, 王月珠, 史洪峰. 激光二极管端面抽运室温Tm,Ho:YLF连续固体激光器.  , 2006, 55(4): 1787-1792. doi: 10.7498/aps.55.1787
    [20] 付圣贵, 范万德, 张 强, 王 志, 李丽君, 张春书, 袁树忠, 董孝义. 光纤光栅选频掺Yb3+双包层光纤激光器.  , 2004, 53(12): 4262-4267. doi: 10.7498/aps.53.4262
计量
  • 文章访问数:  5628
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-05-11
  • 上网日期:  2021-10-07
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map