-
本文进行了1031 nm抽运光对1080 nm单频信号光的拉曼放大实验,详细研究了单频信号光种子功率、拉曼增益光纤长度、抽运方式等因素对 单频光纤拉曼放大器(SF-FRA)输出特性的影响.结果表明,在未受受激布里渊散射(SBS)因素限制时,相同抽运功率条件下,单频信号光种子功率越高,SF-FRA的效率越高;拉曼增益光纤越长,SF-FRA的效率越高;前向抽运时,SF-FRA的效率较高.实验中发现SF-FRA的拉曼放大过程对单频信号光的线宽有较小的展宽.此外,单频信号光远场干涉短曝光图像的对比度为0.814,单频信号光与SF-FRA放大光远场干涉短曝光图像可见度为0.719,表明SF-FRA对单频信号光的相干性有一定影响.实验结论可为其他特殊波长SF-FRA的设计提供一定的参考.Single-frequency fiber Raman amplifier (SF-FRA) is known for the ability of all-band amplification, and it is very attractive for the amplification of single-frequency seed light at a special wavelength, such as 1178nm and 1271nm. The 1080nm single-frequency signal light is amplified by a 1031nm pump source, and the influences of seed power of single-frequency signal light, length of Raman gain fiber, pump scheme are experimentally investigated. The results show that the efficiency of SF-FRA increases with the enhancement of the single-frequency signal power and the length of Raman gain fiber. The efficiency of co-pump SF-FRA is higher than that of the counter-pump SF-FRA. The measure ments show that the linewidth of single-frequency signal light is not broadened obviously in the process of Raman amplification. The visibilities of the rapid-exposure pattern of far-field interference of single-frequency seed light and the amplified light are 0.814 and 0.719, respectively. The results show that the coherence of single-frequency signal light is affected by the SF-FRA more or less. These experimental results can provide a reference for designing other special wavelength SF-FRA.
-
Keywords:
- fiber Raman amplifier /
- single-frequency /
- output characteristic /
- influences factors
[1] Dianov E M,Bufetov I A,Bubnov M M,Grekov M V,Vasiliev S A,Medvedkov O I 2000 Opt.Lett.25 402
[2] Kim N S,Prabhu M,Li C,Song J,Ueda K I 2000 Opt.Commun.176 219
[3] Masuda H,Suzuki K I,Kawai S,Aida K 1997 Electron.Lett.33 753
[4] Feng Y,Taylor L R,Calia D B,Holzlöhner R,Hackenberg W2009 Frontiers in Optics,OSA Technical Digest (CD),San Diego,paper PDPA4
[5] Taylor L R,Feng Y,Calia D B 2010 Opt.Express 18 8450
[6] Nagel J A,Temyanko V,Norwood R A,Peyghambarian N,Dianov E M,Biriukov A S,Sysoliatin A A 2011 OSA/FILAS FWC2
[7] Vergien C,Dajani I,Zeringue C 2010 Opt.Express 18 26214
[8] Leng J Y,Chen S P,Wu W M,Hou J,Xu X J 2011 Opt.Commun.284 2997
[9] Tong Z,Wei H,Jian S S 2006 Acta Phys.Sin.55 1873 (in Chinese)[童 治,魏 淮,简水生 2006 55 1873]
[10] Gao X S,Gao C Q,Song X Y,Li J Z,Wei G H 2006 Acta Photonica Sin.35 1812 (in Chinese)[高雪松,高春清,宋学勇,李家泽,魏光辉 2006 光子学报 35 1812]
-
[1] Dianov E M,Bufetov I A,Bubnov M M,Grekov M V,Vasiliev S A,Medvedkov O I 2000 Opt.Lett.25 402
[2] Kim N S,Prabhu M,Li C,Song J,Ueda K I 2000 Opt.Commun.176 219
[3] Masuda H,Suzuki K I,Kawai S,Aida K 1997 Electron.Lett.33 753
[4] Feng Y,Taylor L R,Calia D B,Holzlöhner R,Hackenberg W2009 Frontiers in Optics,OSA Technical Digest (CD),San Diego,paper PDPA4
[5] Taylor L R,Feng Y,Calia D B 2010 Opt.Express 18 8450
[6] Nagel J A,Temyanko V,Norwood R A,Peyghambarian N,Dianov E M,Biriukov A S,Sysoliatin A A 2011 OSA/FILAS FWC2
[7] Vergien C,Dajani I,Zeringue C 2010 Opt.Express 18 26214
[8] Leng J Y,Chen S P,Wu W M,Hou J,Xu X J 2011 Opt.Commun.284 2997
[9] Tong Z,Wei H,Jian S S 2006 Acta Phys.Sin.55 1873 (in Chinese)[童 治,魏 淮,简水生 2006 55 1873]
[10] Gao X S,Gao C Q,Song X Y,Li J Z,Wei G H 2006 Acta Photonica Sin.35 1812 (in Chinese)[高雪松,高春清,宋学勇,李家泽,魏光辉 2006 光子学报 35 1812]
计量
- 文章访问数: 7138
- PDF下载量: 750
- 被引次数: 0