搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光基模光束的${\boldsymbol{\beta}}$因子

张雨秋 黄良金 常琦 安毅 马鹏飞 冷进勇 周朴

引用本文:
Citation:

光纤激光基模光束的${\boldsymbol{\beta}}$因子

张雨秋, 黄良金, 常琦, 安毅, 马鹏飞, 冷进勇, 周朴

${\boldsymbol{\beta}}$ factor of fundamental mode of fiber laser beam

Zhang Yu-Qiu, Huang Liang-Jin, Chang Qi, An Yi, Ma Peng-Fei, Leng Jin-Yong, Zhou Pu
PDF
HTML
导出引用
  • 光纤激光器凭借其优良特性已在众多领域中得到广泛应用, 光束质量是衡量其性能的重要指标之一. $ M^2 $因子是应用较为广泛的一种评价因子, 但已被证明并不适用于非高斯分布的光斑, 此时常用β因子来评价. 本文以光纤激光基模光束为研究对象, 理想光束选取包含LP01模99%能量的圆形实心均匀光束, 理论研究了β因子与阶跃折射率光纤中LP01模的各项参数之间的关系. 研究发现: 采用经典的β因子定义方法, 当归一化频率V大于1.8时, LP01模的β值小于1, 远场聚焦能力优于理想光束. 此外, β因子随归一化频率V、纤芯半径a或数值孔径NA的增大而减小, 并且与M 2因子呈非线性关系.
    Owing to the advantages of high conversion efficiency, compactness and reliability, the fiber lasers are widely applied to many scientific areas, such as optical fiber communication, sensing and industrial processing. Beam quality is an important criterion for evaluating the performances of high-energy laser beam systems. Therefore, researchers have been constantly searching for the methods of evaluating the beam quality while pursuing higher output power. Until now, the researchers have proposed many definitions of beam quality. In practice, the evaluation parameters of beam quality include focused spot size, Strehl ratio, far-field divergence angle, diffraction limited β factor, energy circle rate, beam parameter product, and M 2 factor. Among them, the M 2 factor is the most suitable for the assessment of beam quality in both the near-field and far-field, which avoids the inaccuracy of the measurement of the beam quality only by the far-field radius or the far-field divergence angle. Thus, the M 2 factor is recognized as an important standard for evaluating beam quality by the International Organization for Standardization (ISO). However, it proves that the M 2 factor is not suitable for non-Gaussian distribution spot. On the other hand, in applications of high-energy laser beam transmission and laser industrial manufacturing, people pay more attention to the focusability of laser energy. In this case, the diffraction limited β factor is more suitable for evaluating beam quality. In this paper, we investigate the beam quality of LP01 mode of fiber laser by β factor, and a circular and solid homogenous beam with the energy of 99% of LP01 mode is considered as an ideal beam. The relationship between β factor and the parameters of LP01 mode in a step-index fiber is studied theoretically. It is found that the value of the beam quality β factor is lower than 1 when the normalized frequency V is bigger than 1.8, and the far-field energy focusability of LP01 mode is better than the case of ideal beam. Besides, the value of β factor decreases with the increase of normalized frequency V, core radius a or numerical aperture NA. In addition, the relationship between M 2 factor and β factor is non-linear.
      通信作者: 周朴, zhoupu203@163.com
    • 基金项目: 国家自然科学基金(批准号: 61805280)和湖南省自然科学基金(批准号: 2019JJ10005)资助的课题
      Corresponding author: Zhou Pu, zhoupu203@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61805280) and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ10005)
    [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [2]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 0904123Google Scholar

    [3]

    周军, 王璞, 周朴 2017 中国激光 44 0201000

    Zhou J, Wang P, Zhou P 2017 Chin. J. Lasers 44 0201000

    [4]

    杨永强, 吴世彪, 张越, 朱勇强 2020 中国激光 47 0500012Google Scholar

    Yang Y Q, Wu S B, Zhang Y, Zhu Y Q 2020 Chin. J. Lasers 47 0500012Google Scholar

    [5]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Chen L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [6]

    Jauregui C, Limpert J, Tuennermann A 2013 Nat. Photonics 7 861Google Scholar

    [7]

    陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 63 085202Google Scholar

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202Google Scholar

    [8]

    杨昌盛, 徐善辉, 周军, 何兵, 杨依枫, 渠红伟, 赵智德, 杨中民 2017 中国科学: 技术科学 47 1038Google Scholar

    Yang C S, Xu S H, Zhou J, He B, Yang Y F, Qu H W, Zhao Z D, Yang Z M 2017 Scientia Sin. Technol. 47 1038Google Scholar

    [9]

    Siegman A E 1993 Laser Resonators and Coherent Optics: Modeling, Technology, and Applications Los Angeles, CA, United States, August 13, 1993 pp1−12

    [10]

    杜祥琬 1997 中国激光 24 327Google Scholar

    Du X W 1997 Chin. J. Lasers 24 327Google Scholar

    [11]

    刘泽金, 周朴, 许晓军 2009 中国激光 36 773Google Scholar

    Liu Z J, Zhou P, Xu X J 2009 Chin. J. Lasers 36 773Google Scholar

    [12]

    苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第39−50页

    Su Y, Wan M 2004 High Energy Laser System (Bejing: National Defense Industry Press) pp39−50 (in Chinese)

    [13]

    冯国英, 周寿桓 2009 中国激光 36 1643Google Scholar

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643Google Scholar

    [14]

    International Organization for Standardization. Laser and Laser-Related Equipment: Test Methods for Laser Beam Parameters, Beam Width, Divergence Angle and Beam Propagation Factor 1999 ISO11146

    [15]

    Ophir-Spiricon’s M2-200 s Automated M2 Laser Beam Propagation Analyzer Enhances Robust Packaging for 24/7 Operation, Gary Wagner https://www.ophiropt.com/ laser-measurement/node/9283 [2021-6-9]

    [16]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R 2016 Opt. Express 24 6011Google Scholar

    [17]

    Flores A, Robin C, Lanari A, Dajani I 2014 Opt. Express 22 17735Google Scholar

    [18]

    Gray S, Liu A, Walton D T, Wang J, Li M J, Chen X, Ruffin A B, DeMeritt J A, Zenteno L A 2007 Opt. Express 15 17044Google Scholar

    [19]

    Ma P F, Tao R M, Su R T, Wang X L, Zhou P, Liu Z Z 2016 Opt. Express 24 4187Google Scholar

    [20]

    Huang L J, Wang W L, Leng J Y, Guo S F, Xu X J, Cheng X A 2014 IEEE Photon. Technol. Lett. 26 33Google Scholar

    [21]

    陈子伦, 雷成敏, 王泽锋, 周朴, 马阎星, 肖虎, 冷进勇, 王小林, 许晓军, 陈金宝, 刘泽金 2018 中国激光 45 324

    Chen Z L, Lei C M, Wang Z F, Zhou P, Ma Y X, Xiao H, Leng J Y, Wang X L, Xu X J, Chen J B, Liu Z J 2018 Chin. J. Lasers 45 324

    [22]

    Siegman A E 1998 Diode Pumped Solid State Lasers: Applications and Issues Washington D.C., United States, January 1, 1998 pp184−199

    [23]

    Chen Z Z, Xu Y T, Guo Y D, Wang B S, Xu J, Xu J L, Gao H W, Yuan L, Yuan H T, Lin Y Y 2015 Appl. Opt. 54 5011Google Scholar

    [24]

    Sean Ross T 2013 Laser Beam Quality Metrics (Bellingham: SPIE Press) pp42−51

    [25]

    刘泽金, 陆启生, 赵伊君 1998 中国激光 25 193Google Scholar

    Liu Z J, Lu Q S, Zhao Y J 1998 Chin. J. Lasers 25 193Google Scholar

    [26]

    高卫, 王云萍, 李斌 2003 红外与激光工程 32 61Google Scholar

    Gao W, Wang Y P, Li B 2003 Infrared Laser Eng. 32 61Google Scholar

    [27]

    Yan P, Wang X J, Gong M L, Xiao Q R 2016 Appl. Opt. 55 6145Google Scholar

    [28]

    Tan Y, Li X Y 2012 High-Power Lasers and Applications VI Beijing, China November 5–7, 2012 p85511 C

    [29]

    Ji Z Y, Zhang X F 2017 2017 International Conference on Optical Instruments and Technology Beijing, China, October 28−30, 2017 p10619

    [30]

    高卫 2003 光子学报 32 1038

    Gao W 2003 Acta Photon. Sinica 32 1038

    [31]

    周朴 2018 强激光与粒子束 30 060201Google Scholar

    Zhou P 2018 High Power Laser Part. Beams 30 060201Google Scholar

    [32]

    Belanger P A 1993 Opt. Eng. 32 2107Google Scholar

    [33]

    廖延彪, 金慧明 1992 光纤光学 (北京: 清华大学出版社) 第28页

    Liao Y B, Jin H M 2000 Fiber Optics (Beijing: Tsinghua University Press) p28 (in Chinese)

    [34]

    Jain D, Jung Y, Kim J, Sahu J K 2014 Opt. Lett. 39 5200Google Scholar

    [35]

    Marciante J R, Roides R G, Shkunov V V, Rockwell D A 2010 Opt. Lett. 35 1828Google Scholar

    [36]

    吕百达 1992 激光光学 (北京: 高等教育出版社) 第76页

    Lü B D 2003 Laser Optics (Beijing: Higher Education Press) p76 (in Chinese)

    [37]

    饶瑞中 2005 中国激光 32 53Google Scholar

    Rao R Z 2005 Chin. J. Lasers 32 53Google Scholar

    [38]

    Siegman A E 1990 Optical Resonators Los Angeles, CA, United States, June 1 pp1−14

    [39]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350Google Scholar

  • 图 1  不同归一化频率V下, 纤芯半径(洋红色实线)和包含LP01模99%能量的环围半径(黄色虚线)示意图

    Fig. 1.  Schematic of core radius (magenta solid line) and the radius containing 99% of the energy of LP01 mode (yellow dotted line) for different values of normalized frequency V.

    图 2  不同归一化频率V下, LP01模(蓝色实线)和理想光束(洋红色虚线)在出射面 ((a1)—(a4))和焦平面((b1)—(b4))的一维光强分布

    Fig. 2.  For different values of normalized frequency V, 1D intensity distributions of LP01 mode (blue solid line) and ideal beam (magenta dotted line) in the initial plane ((a1)−(a4)) and focal plane((b1)−(b4)).

    图 3  不同半径定义下β因子随归一化频率V的变化关系

    Fig. 3.  β factor versus normalized frequency V for different definitions of radius.

    图 4  β因子随纤芯半径a (a)和数值孔径NA (b)的变化关系图

    Fig. 4.  β factor versus core radius a (a) and numerical aperture NA (b).

    图 5  (a) 光束质量因子随归一化频率V和(b) β因子随$ M^2 $因子的变化关系图

    Fig. 5.  (a) Beam quality factor versus normalized frequency V and (b) β factor versus $ M^2 $ factor.

    Baidu
  • [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [2]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 0904123Google Scholar

    [3]

    周军, 王璞, 周朴 2017 中国激光 44 0201000

    Zhou J, Wang P, Zhou P 2017 Chin. J. Lasers 44 0201000

    [4]

    杨永强, 吴世彪, 张越, 朱勇强 2020 中国激光 47 0500012Google Scholar

    Yang Y Q, Wu S B, Zhang Y, Zhu Y Q 2020 Chin. J. Lasers 47 0500012Google Scholar

    [5]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Chen L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [6]

    Jauregui C, Limpert J, Tuennermann A 2013 Nat. Photonics 7 861Google Scholar

    [7]

    陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 63 085202Google Scholar

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202Google Scholar

    [8]

    杨昌盛, 徐善辉, 周军, 何兵, 杨依枫, 渠红伟, 赵智德, 杨中民 2017 中国科学: 技术科学 47 1038Google Scholar

    Yang C S, Xu S H, Zhou J, He B, Yang Y F, Qu H W, Zhao Z D, Yang Z M 2017 Scientia Sin. Technol. 47 1038Google Scholar

    [9]

    Siegman A E 1993 Laser Resonators and Coherent Optics: Modeling, Technology, and Applications Los Angeles, CA, United States, August 13, 1993 pp1−12

    [10]

    杜祥琬 1997 中国激光 24 327Google Scholar

    Du X W 1997 Chin. J. Lasers 24 327Google Scholar

    [11]

    刘泽金, 周朴, 许晓军 2009 中国激光 36 773Google Scholar

    Liu Z J, Zhou P, Xu X J 2009 Chin. J. Lasers 36 773Google Scholar

    [12]

    苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第39−50页

    Su Y, Wan M 2004 High Energy Laser System (Bejing: National Defense Industry Press) pp39−50 (in Chinese)

    [13]

    冯国英, 周寿桓 2009 中国激光 36 1643Google Scholar

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643Google Scholar

    [14]

    International Organization for Standardization. Laser and Laser-Related Equipment: Test Methods for Laser Beam Parameters, Beam Width, Divergence Angle and Beam Propagation Factor 1999 ISO11146

    [15]

    Ophir-Spiricon’s M2-200 s Automated M2 Laser Beam Propagation Analyzer Enhances Robust Packaging for 24/7 Operation, Gary Wagner https://www.ophiropt.com/ laser-measurement/node/9283 [2021-6-9]

    [16]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R 2016 Opt. Express 24 6011Google Scholar

    [17]

    Flores A, Robin C, Lanari A, Dajani I 2014 Opt. Express 22 17735Google Scholar

    [18]

    Gray S, Liu A, Walton D T, Wang J, Li M J, Chen X, Ruffin A B, DeMeritt J A, Zenteno L A 2007 Opt. Express 15 17044Google Scholar

    [19]

    Ma P F, Tao R M, Su R T, Wang X L, Zhou P, Liu Z Z 2016 Opt. Express 24 4187Google Scholar

    [20]

    Huang L J, Wang W L, Leng J Y, Guo S F, Xu X J, Cheng X A 2014 IEEE Photon. Technol. Lett. 26 33Google Scholar

    [21]

    陈子伦, 雷成敏, 王泽锋, 周朴, 马阎星, 肖虎, 冷进勇, 王小林, 许晓军, 陈金宝, 刘泽金 2018 中国激光 45 324

    Chen Z L, Lei C M, Wang Z F, Zhou P, Ma Y X, Xiao H, Leng J Y, Wang X L, Xu X J, Chen J B, Liu Z J 2018 Chin. J. Lasers 45 324

    [22]

    Siegman A E 1998 Diode Pumped Solid State Lasers: Applications and Issues Washington D.C., United States, January 1, 1998 pp184−199

    [23]

    Chen Z Z, Xu Y T, Guo Y D, Wang B S, Xu J, Xu J L, Gao H W, Yuan L, Yuan H T, Lin Y Y 2015 Appl. Opt. 54 5011Google Scholar

    [24]

    Sean Ross T 2013 Laser Beam Quality Metrics (Bellingham: SPIE Press) pp42−51

    [25]

    刘泽金, 陆启生, 赵伊君 1998 中国激光 25 193Google Scholar

    Liu Z J, Lu Q S, Zhao Y J 1998 Chin. J. Lasers 25 193Google Scholar

    [26]

    高卫, 王云萍, 李斌 2003 红外与激光工程 32 61Google Scholar

    Gao W, Wang Y P, Li B 2003 Infrared Laser Eng. 32 61Google Scholar

    [27]

    Yan P, Wang X J, Gong M L, Xiao Q R 2016 Appl. Opt. 55 6145Google Scholar

    [28]

    Tan Y, Li X Y 2012 High-Power Lasers and Applications VI Beijing, China November 5–7, 2012 p85511 C

    [29]

    Ji Z Y, Zhang X F 2017 2017 International Conference on Optical Instruments and Technology Beijing, China, October 28−30, 2017 p10619

    [30]

    高卫 2003 光子学报 32 1038

    Gao W 2003 Acta Photon. Sinica 32 1038

    [31]

    周朴 2018 强激光与粒子束 30 060201Google Scholar

    Zhou P 2018 High Power Laser Part. Beams 30 060201Google Scholar

    [32]

    Belanger P A 1993 Opt. Eng. 32 2107Google Scholar

    [33]

    廖延彪, 金慧明 1992 光纤光学 (北京: 清华大学出版社) 第28页

    Liao Y B, Jin H M 2000 Fiber Optics (Beijing: Tsinghua University Press) p28 (in Chinese)

    [34]

    Jain D, Jung Y, Kim J, Sahu J K 2014 Opt. Lett. 39 5200Google Scholar

    [35]

    Marciante J R, Roides R G, Shkunov V V, Rockwell D A 2010 Opt. Lett. 35 1828Google Scholar

    [36]

    吕百达 1992 激光光学 (北京: 高等教育出版社) 第76页

    Lü B D 2003 Laser Optics (Beijing: Higher Education Press) p76 (in Chinese)

    [37]

    饶瑞中 2005 中国激光 32 53Google Scholar

    Rao R Z 2005 Chin. J. Lasers 32 53Google Scholar

    [38]

    Siegman A E 1990 Optical Resonators Los Angeles, CA, United States, June 1 pp1−14

    [39]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350Google Scholar

  • [1] 丁欣怡, 王力, 曾令筏, 吴函烁, 王小林, 宁禹, 习锋杰. 双端输出近单模准连续全光纤激光器.  , 2023, 72(15): 154205. doi: 10.7498/aps.72.20230616
    [2] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [3] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法.  , 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [4] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展.  , 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [5] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析.  , 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究.  , 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量.  , 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [8] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究.  , 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [9] 张国文, 卢兴强, 曹华保, 尹宪华, 吕凤年, 张臻, 李菁辉, 王仁贵, 马伟新, 朱俭. 高功率激光光束经颗粒污染后的近场衍射效应.  , 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [10] 朱家健, 杜文博, 周朴, 许晓军, 刘泽金. 单模光纤激光极限功率的数值研究.  , 2012, 61(6): 064209. doi: 10.7498/aps.61.064209
    [11] 李建龙, 冯国英, 周寿桓, 李玮. 单口径相干合成系统激光光束的M2因子研究.  , 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [12] 韩凯, 许晓军, 周朴, 马阎星, 王小林, 刘泽金. 多波长激光主动式相干合成理论初探.  , 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [13] 王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君. 基于相位调制-解调的光纤激光相位噪声检测方法研究.  , 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [14] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正.  , 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [15] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究.  , 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [16] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成.  , 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [17] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统.  , 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [18] 李玮, 陈建国, 冯国英, 黄宇, 李刚, 谢旭东, 杨火木, 周寿桓. 厄米-高斯光束的M2因子矩阵.  , 2009, 58(4): 2461-2466. doi: 10.7498/aps.58.2461
    [19] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响.  , 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] 罗时荣, 吕百达, 孙年春. 截断光束的广义M2因子.  , 2004, 53(7): 2145-2149. doi: 10.7498/aps.53.2145
计量
  • 文章访问数:  5097
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-06
  • 修回日期:  2021-06-03
  • 上网日期:  2021-09-29
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map