-
报道了一种工作波长在1.6 μm的哑铃形结构高功率铒镱共掺全光纤锁模激光器. 无隔离器结构设计以及大模面积双包层铒镱共掺光纤的使用, 使振荡器可稳定高效地工作于较高泵浦功率下. 证明了不同带内吸收系数的铒镱共掺光纤对输出波长有极其重要的影响, 带内吸收调控可作为一种有效的波长控制方法. 实验中, 利用高带内吸收光纤获得了稳定的1.6 μm高功率、大能量纳秒类噪声方形脉冲输出, 最大平均输出功率和单脉冲能量分别为1.16 W和1.26 μJ. 同时研究了附加插入损耗对所设计激光器输出特性的影响, 当总附加插入损耗为10 dB时, 激光器仍然可以稳定发射1.6 μm类噪声方形脉冲, 说明利用高带内吸收系数的铒镱共掺光纤设计的激光器对1.6 μm输出波长具备极强的鲁棒性. 对于过大的附加插入损耗, 1.6 μm输出波长会被完全抑制.We demonstrate generation of high-power and large-energy noise-like square pulses at 1612 nm in an all-fiber dumbbell-shaped mode-locked Er: Yb co-doped double-clad fiber (EYDF) laser. The custom couplers with high power handling keep the laser function well. Large-mode-area EYDF with high power handling and enough high pump power make it possible to obtain high output power in the oscillator. Compared with figure-eight structure, strictly all-fiber dumbbell-shaped structure without isolator and optimizing splicing loss could reduce intra-cavity loss and improve optical to optical efficiency, which could reduce heat accumulation and enhance the power carrying capacity of EYDF. In order to study the influence of in-band absorption on output wavelength, EYDF1 and EYDF2 with different in-band absorption coefficients are accessed to intracavity, respectively. It is directly demonstrated that regulation of in-band absorption is an effective way to control the output wavelength. Strong in-band absorption could restrain the emission of C-band and make the wavelength range above 1.6 μm obtain enough gain. Linear insertion loss is another important factor to affect the emission wavelength in EYDF fiber laser. At pump power of 8 W, maximum average output power with emission wavelength above 1.6 μm can reach 1.16 W, corresponding to a single pulse energy of 1.26 μJ. SNR of output pulse is 70 dB which indicates the high stability of mode-locking. In order to verify and evaluate influence of insertion loss on the output characteristics of mode-locked laser, a variable attenuator is inserted in experimental setup, allowing us adjust the linear loss of the cavity. By increasing pump power and adjusting PCs, mode-locked pulses could be obtained on the condition of large additional insertion loss. Even though ~ 10 dB additional insertion loss is introduced, the oscillation still could function at 1612 nm and keep stable mode-locked state. This result demonstrates our oscillation could bear strong additional loss and own strong robustness. If excessively large additional insertion loss is added, 1566 nm becomes the central emission wavelength and wavelength component at 1612 nm almost disappears. Our investigation supplies a direct guideline to design high-power fiber laser with emission wavelength above 1.6 μm.
-
Keywords:
- all-fiber fiber /
- noise-like pulse /
- mode-locking
[1] Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar
[2] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar
[3] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 67 094207Google Scholar
Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar
[4] 张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 68 234204Google Scholar
Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar
[5] 王富任, 王天枢, 马万卓, 贾青松, 赵得胜, 刘润民 2019 应用光学 40 0710Google Scholar
Wang F R, Wang T S, Ma W Z, Jia Q S, Zhao D S, Liu R M 2019 Journal of Applied Optics 40 0710Google Scholar
[6] Zheng Y, Tian J R, Dong Z K, Xu R Q, Li K X, Song Y R 2017 Chinese Phys. B 26 074212Google Scholar
[7] Liu W, Liu M, Liu X, Wang X, Teng H, Lei M, Wei Z, Wei Z 2020 Appl. Phys. Lett. 116 061901Google Scholar
[8] Morin F, Druon F, Hanna M, Georges P 2009 Opt. Lett. 34 1991Google Scholar
[9] Huang Q, Zou C, Wang T, Araimi M A, Rozhin A, Mou C 2018 Chinese Phys. B 27 094210Google Scholar
[10] Kang J, Kong C, Feng P, Wei X, Luo Z C, Lam E Y, Wong K K Y 2018 IEEE Photon. Technol. Lett. 30 311Google Scholar
[11] Wang Z, Zhan L, Fang X, Gao C, Qian K 2016 J. Lightwave Technol. 34 4128Google Scholar
[12] Dong X, Shum P, Ngo N Q, Chan C C, Guan B O, Tam H Y 2003 Opt. Express 11 3622Google Scholar
[13] Dong X, Shum P, Ngo N Q, Tam H Y, Dong X 2005 J. Lightwave Technol. 23 1334Google Scholar
[14] 贾浩天, 王军利, 滕浩, 吕志国, 刘文军, 魏志义 2016 中国激光 43 1101008Google Scholar
Jia H T, Wang J L, Teng H, Lv Z G, Liu W J, Wei Z Y 2016 Chinese Journal of Lasers 43 1101008Google Scholar
[15] Guesmi K, Meng Y, Niang A, Mouchel P, Salhi M, Bahloul F, Attia R, Sanchez F 2014 Opt. Lett. 39 6383Google Scholar
[16] Meng Y, Niang A, Guesmi K, Salhi M, Sanchez F 2014 Opt. Express 22 29921Google Scholar
[17] Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z, Sanchez F 2015 Opt. Express 23 23053Google Scholar
[18] Yan D, Li X, Zhang S, Han M, Han H, Yang Z 2016 Opt. Express 24 739Google Scholar
[19] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 64 064206Google Scholar
Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar
[20] Li D, Shen D, Li L, Tang D, Su L, Zhao L 2018 Opt. Lett. 43 1222Google Scholar
[21] Zheng Z, Ouyang D, Ren X, Wang J, Pei J, Ruan S 2019 Photon. Res. 7 513Google Scholar
[22] Du T, Li W, Ruan Q, Wang K, Chen N, Luo Z 2018 Appl. Phys. Express 11 052701Google Scholar
[23] Zheng X W, Luo Z C, Liu H, Zhao N, Ning Q Y, Liu M, Feng X H, Xing X B, Luo A P, Xu W C 2014 Appl. Phys. Express 7 042701Google Scholar
[24] Jeong Y, Vazquezzuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar
[25] Zhao K, Wang P, Ding Y, Yao S, Gui L, Xiao X, Yang C 2019 Appl. Phys. Express 12 012002Google Scholar
[26] 陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002
Chen J W, Zhao L M 2017 Laser & Optoelectronics Progress 54 110002
[27] 金鑫鑫, 李雷, 罗娇林, 葛颜绮, 张倩, 赵鹭明 2015 激光与光电子学进展 52 121902
Jin X X, Li L, Luo J L, Ge Y Q, Zhang Q, Zhao L M 2015 Laser & Optoelectronics Progress 52 121902
-
图 3 对应EYDF1的输出脉冲 (a)时域、(b)光谱演化过程; (c)一次谐波射频谱和100 MHz范围的射频谱(插图); (d) 50 ps范围的自相关迹和5 ps自相关迹(插图);对应EYDF2的输出脉冲的(e)时域、(f)光谱演化过程
Fig. 3. (a) Output pulse waveforms, and (b) optical spectra evolution at different pump power of EYDF1; (c) autocorrelation trace over a 50 ps span for EYDF1 (the inset shows the autocorrelation trace with 5 ps span); (d) RF spectrum at the fundamental frequency for EYDF1 (the inset shows broadband RF spectra with 100 MHz span); (e) output pulse waveforms, and (f) optical spectra evolution at different pump power of EYDF2.
-
[1] Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar
[2] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar
[3] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 67 094207Google Scholar
Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar
[4] 张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 68 234204Google Scholar
Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar
[5] 王富任, 王天枢, 马万卓, 贾青松, 赵得胜, 刘润民 2019 应用光学 40 0710Google Scholar
Wang F R, Wang T S, Ma W Z, Jia Q S, Zhao D S, Liu R M 2019 Journal of Applied Optics 40 0710Google Scholar
[6] Zheng Y, Tian J R, Dong Z K, Xu R Q, Li K X, Song Y R 2017 Chinese Phys. B 26 074212Google Scholar
[7] Liu W, Liu M, Liu X, Wang X, Teng H, Lei M, Wei Z, Wei Z 2020 Appl. Phys. Lett. 116 061901Google Scholar
[8] Morin F, Druon F, Hanna M, Georges P 2009 Opt. Lett. 34 1991Google Scholar
[9] Huang Q, Zou C, Wang T, Araimi M A, Rozhin A, Mou C 2018 Chinese Phys. B 27 094210Google Scholar
[10] Kang J, Kong C, Feng P, Wei X, Luo Z C, Lam E Y, Wong K K Y 2018 IEEE Photon. Technol. Lett. 30 311Google Scholar
[11] Wang Z, Zhan L, Fang X, Gao C, Qian K 2016 J. Lightwave Technol. 34 4128Google Scholar
[12] Dong X, Shum P, Ngo N Q, Chan C C, Guan B O, Tam H Y 2003 Opt. Express 11 3622Google Scholar
[13] Dong X, Shum P, Ngo N Q, Tam H Y, Dong X 2005 J. Lightwave Technol. 23 1334Google Scholar
[14] 贾浩天, 王军利, 滕浩, 吕志国, 刘文军, 魏志义 2016 中国激光 43 1101008Google Scholar
Jia H T, Wang J L, Teng H, Lv Z G, Liu W J, Wei Z Y 2016 Chinese Journal of Lasers 43 1101008Google Scholar
[15] Guesmi K, Meng Y, Niang A, Mouchel P, Salhi M, Bahloul F, Attia R, Sanchez F 2014 Opt. Lett. 39 6383Google Scholar
[16] Meng Y, Niang A, Guesmi K, Salhi M, Sanchez F 2014 Opt. Express 22 29921Google Scholar
[17] Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z, Sanchez F 2015 Opt. Express 23 23053Google Scholar
[18] Yan D, Li X, Zhang S, Han M, Han H, Yang Z 2016 Opt. Express 24 739Google Scholar
[19] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 64 064206Google Scholar
Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar
[20] Li D, Shen D, Li L, Tang D, Su L, Zhao L 2018 Opt. Lett. 43 1222Google Scholar
[21] Zheng Z, Ouyang D, Ren X, Wang J, Pei J, Ruan S 2019 Photon. Res. 7 513Google Scholar
[22] Du T, Li W, Ruan Q, Wang K, Chen N, Luo Z 2018 Appl. Phys. Express 11 052701Google Scholar
[23] Zheng X W, Luo Z C, Liu H, Zhao N, Ning Q Y, Liu M, Feng X H, Xing X B, Luo A P, Xu W C 2014 Appl. Phys. Express 7 042701Google Scholar
[24] Jeong Y, Vazquezzuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar
[25] Zhao K, Wang P, Ding Y, Yao S, Gui L, Xiao X, Yang C 2019 Appl. Phys. Express 12 012002Google Scholar
[26] 陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002
Chen J W, Zhao L M 2017 Laser & Optoelectronics Progress 54 110002
[27] 金鑫鑫, 李雷, 罗娇林, 葛颜绮, 张倩, 赵鹭明 2015 激光与光电子学进展 52 121902
Jin X X, Li L, Luo J L, Ge Y Q, Zhang Q, Zhao L M 2015 Laser & Optoelectronics Progress 52 121902
计量
- 文章访问数: 8063
- PDF下载量: 152
- 被引次数: 0