-
本文报道了一种宽带可连续调谐的半导体薄片激光器. 增益芯片的有源区由满足谐振周期增益结构的InGaAs多量子阱构成, 其荧光峰值波长位于965 nm附近. 利用增益芯片量子阱的宽带特性, 结合由高反射率外腔镜所构成的直线谐振腔, 可保障激光器较低的损耗和较宽的调谐范围. 在腔内插入不同厚度的双折射滤波片, 可获得连续可调谐的激光波长输出. 当双折射滤波片厚度为2 mm时, 激光器的波长调谐范围为45 nm, 最大输出功率为122 mW, X和Y方向的光束质量M 2因子分别为1.00和1.02. 文章还对增益芯片面发射谱的温度特性和双折射滤波片对激光线宽的压窄作用进行了讨论.A broadband continuously tunable semiconductor disk laser is reported in this paper. The active region of gain chip is composed of InGaAs multiple quantum wells with resonant periodic gain structure, and its fluorescence peak wavelength is around 965 nm. Using the wideband characteristics of the quantum wells in gain chip, along with the simple linear cavity that is formed by a high reflectivity external mirror, the laser has a low cavity loss and a wide tuning range. The continuously tunable laser wavelength can be obtained by inserting birefringent filters with different thickness into the cavity. When the thickness of the birefringent filter is 2 mm, the wavelength tuning range of the laser is 45 nm, the maximum output power is 122 mW, and the beam quality M2 factors in the X- and the Y-directions are 1.00 and 1.02, respectively. The temperature characteristics of the surface-emitting spectra of gain chip and the narrowing effect of birefringent filter on laser linewidth h are also discussed.
-
Keywords:
- semiconductor disk laser /
- continuous tuning /
- birefringent filter /
- narrow linewidth
[1] Lu B, Wei F, Zhang Z, Xu D, Pan Z Q, Chen D J, Cai H W 2015 Chin. Opt. Lett. 13 091402Google Scholar
[2] Farrell T, McDonald D 2004 Proc. SPIE 5594 66Google Scholar
[3] Rothe K W, Brinkmann U, Walther H 1974 Appl. Phys. 10 678Google Scholar
[4] Soldatov A N, Reimer I V, Evtushenko V A, Melnikov K Yu, Malikov A V 2010 B. Lebedev Phys. Inst. 37 4Google Scholar
[5] Bhatia P S, Keto J W 1996 Appl. Opt. 35 4152Google Scholar
[6] Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar
[7] Fan T Y, Byer R L 1988 IEEE J. Quantum Electron. 24 895Google Scholar
[8] Byer R L 1988 Science 239 742Google Scholar
[9] Huber G, Kränkel C, Petermann K 2010 JOSA B 27 B93Google Scholar
[10] Coldren L A, Fish G A, Akulova Y, Barton J S, Colder C W 2004 J. Lightwave Technol. 22 193Google Scholar
[11] 郝秀晴, 陈根祥 2010 光通信技术 34 4Google Scholar
Hao X Q, Chen G X 2010 Opt. Commun. Technol. 34 4Google Scholar
[12] Guina M, Rantamäki A, Härkönen A 2017 J. Phys. Appl. Phys. 50 383001Google Scholar
[13] Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar
[14] Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M, Stolz W 2012 Electron. Lett. 48 516Google Scholar
[15] Hou G Y, Shu S L, Feng J, Popp A, Schmidt B, Lu H Y, Wang L J, Tian S C, Tong C Z, Wang L J 2019 IEEE Photonics J. 11 1Google Scholar
[16] Fedorova K A, Guoyu H, Wichmann M, Kriso C, Zhang F, Stolz W, Schellrt M, Koch M, Rahimi-lman A 2020 Phys. Status Solidi-R 14 2000204Google Scholar
[17] Li F, Mahmoud F, James T, Robert B, Yunshi K, Aramais Z, Jorg H, Jerome V, Wolfgang S, Stephan W 2006 Appl. Phys. Lett. 88 21105Google Scholar
[18] Li F, Fallahi M, Zakharian A R, Hader J, Koch SW 2007 IEEE Photonic. Tech. L. 19 544Google Scholar
[19] Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010 IEEE Photonic. Tech. L. 22 978Google Scholar
[20] Butkus M, Rautiainen J, Okhotnikov O G, Hamilton C J, Malcolm G P A, Mikhrin S S, Krestnikov I L, Livshits D A, Rafailov E U 2011 IEEE J. Sel. Top. Quant. 17 1763Google Scholar
[21] Yang Z, Albrecht R A, Cederberg J G, Sheik-Bahae M 2016 Appl. Phys. Lett. 109 1063Google Scholar
[22] Artur B, Anna W J, Iwona S, Michal W, Marta W, Jan M 2017 IEEE PhotoN. Technol. Lett. 29 2215Google Scholar
[23] Zhang P, Song Y R, Zhang X P, Dai T L, Liang Y P, Fan S Q 2011 Opt. Rev. 18 317Google Scholar
[24] Mangold M, Wittwer V J, Sieber O D, Martin H, Igor L K, Daniil A L, Matthias G, Thomas S, Ursula K 2012 Opt. Express 20 4136Google Scholar
[25] Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, Murrary J T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764Google Scholar
[26] Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313Google Scholar
[27] 王亚龙, 王庆, 李文静, 王雅兰 2018 光学技术 44 88
Wang Y L, Wang Q, Li W J, Wang Y L 2018 Opt. Tech. 44 88
-
-
[1] Lu B, Wei F, Zhang Z, Xu D, Pan Z Q, Chen D J, Cai H W 2015 Chin. Opt. Lett. 13 091402Google Scholar
[2] Farrell T, McDonald D 2004 Proc. SPIE 5594 66Google Scholar
[3] Rothe K W, Brinkmann U, Walther H 1974 Appl. Phys. 10 678Google Scholar
[4] Soldatov A N, Reimer I V, Evtushenko V A, Melnikov K Yu, Malikov A V 2010 B. Lebedev Phys. Inst. 37 4Google Scholar
[5] Bhatia P S, Keto J W 1996 Appl. Opt. 35 4152Google Scholar
[6] Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar
[7] Fan T Y, Byer R L 1988 IEEE J. Quantum Electron. 24 895Google Scholar
[8] Byer R L 1988 Science 239 742Google Scholar
[9] Huber G, Kränkel C, Petermann K 2010 JOSA B 27 B93Google Scholar
[10] Coldren L A, Fish G A, Akulova Y, Barton J S, Colder C W 2004 J. Lightwave Technol. 22 193Google Scholar
[11] 郝秀晴, 陈根祥 2010 光通信技术 34 4Google Scholar
Hao X Q, Chen G X 2010 Opt. Commun. Technol. 34 4Google Scholar
[12] Guina M, Rantamäki A, Härkönen A 2017 J. Phys. Appl. Phys. 50 383001Google Scholar
[13] Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar
[14] Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M, Stolz W 2012 Electron. Lett. 48 516Google Scholar
[15] Hou G Y, Shu S L, Feng J, Popp A, Schmidt B, Lu H Y, Wang L J, Tian S C, Tong C Z, Wang L J 2019 IEEE Photonics J. 11 1Google Scholar
[16] Fedorova K A, Guoyu H, Wichmann M, Kriso C, Zhang F, Stolz W, Schellrt M, Koch M, Rahimi-lman A 2020 Phys. Status Solidi-R 14 2000204Google Scholar
[17] Li F, Mahmoud F, James T, Robert B, Yunshi K, Aramais Z, Jorg H, Jerome V, Wolfgang S, Stephan W 2006 Appl. Phys. Lett. 88 21105Google Scholar
[18] Li F, Fallahi M, Zakharian A R, Hader J, Koch SW 2007 IEEE Photonic. Tech. L. 19 544Google Scholar
[19] Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010 IEEE Photonic. Tech. L. 22 978Google Scholar
[20] Butkus M, Rautiainen J, Okhotnikov O G, Hamilton C J, Malcolm G P A, Mikhrin S S, Krestnikov I L, Livshits D A, Rafailov E U 2011 IEEE J. Sel. Top. Quant. 17 1763Google Scholar
[21] Yang Z, Albrecht R A, Cederberg J G, Sheik-Bahae M 2016 Appl. Phys. Lett. 109 1063Google Scholar
[22] Artur B, Anna W J, Iwona S, Michal W, Marta W, Jan M 2017 IEEE PhotoN. Technol. Lett. 29 2215Google Scholar
[23] Zhang P, Song Y R, Zhang X P, Dai T L, Liang Y P, Fan S Q 2011 Opt. Rev. 18 317Google Scholar
[24] Mangold M, Wittwer V J, Sieber O D, Martin H, Igor L K, Daniil A L, Matthias G, Thomas S, Ursula K 2012 Opt. Express 20 4136Google Scholar
[25] Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, Murrary J T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764Google Scholar
[26] Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313Google Scholar
[27] 王亚龙, 王庆, 李文静, 王雅兰 2018 光学技术 44 88
Wang Y L, Wang Q, Li W J, Wang Y L 2018 Opt. Tech. 44 88
计量
- 文章访问数: 5626
- PDF下载量: 88
- 被引次数: 0