搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

由正负磁单极对相互作用诱导的孤立狄拉克弦

焦婧 罗焕波 李禄

引用本文:
Citation:

由正负磁单极对相互作用诱导的孤立狄拉克弦

焦婧, 罗焕波, 李禄

Isolated Dirac string induced by interaction between positive and negative monopoles

Jiao Jing, Luo Huan-Bo, Li Lu
PDF
HTML
导出引用
  • 基于三维旋量Gross-Pitaevskii (GP)方程研究在含时周期性外磁场作用下玻色-爱因斯坦凝聚体的动力学行为. 结果显示, 在含时周期外磁场的作用下, 铁磁态自旋为1的玻色-爱因斯坦凝聚体将发生拓扑形变. 当磁场的两个零点进入凝聚体后, 自旋向上态的密度布居图在z轴上分别形成向上和向下的凸起. 随着磁场的两个零点在凝聚体内逐渐重合, 向上和向下的凸起被拉长, 最终自旋向上态在z轴上呈线状分布, 这与理论分析预测得到的孤立狄拉克弦相对应. 最后, 通过计算凝聚体的超流涡度给出磁单极的表征图. 结果显示, 凝聚体在磁场的两个零点处形成正、负磁单极对, 分别对应着自旋向上态在z轴上向上和向下的凸起. 随着磁场的两个零点重合, 正、负磁单极对中的两条狄拉克弦逐渐靠近, 之后大约经5 ms, 它们完全相连, 最终形成孤立的狄拉克弦.
    Based on the three-dimensional spinor Gross-Pitaevskii (GP) equation, the dynamic behavior of the Bose-Einstein condensate under the action of a time-dependent periodic external magnetic field is studied. The results show that the Bose-Einstein condensate with spin-1 in a ferromagnetic state will undergo topological deformation under the action of an external magnetic field periodically varying with time. When the two zero points of the magnetic field enter into the condensate, the density pattern of the spin-up state forms small convexities protruding upward and downward on the z-axis, respectively. As the two zero points of the magnetic field gradually coincide in the condensate, the upward and downward protruding convexities are elongated. Finally, the spin-up state in the shape of a line is distributed on the z-axis, which is consistent with the scenario of the isolated Dirac string predicted by theoretical analysis. As far as we know, magnetic monopole can be divided into positive monopole and negative monopole. The positive magnetic monopole means that all magnetic induction lines are emitted from the center of the circle. And only the Dirac string points to the center of the circle. The negative monopole is that all the magnetic induction lines point from the outside to the center of the circle, and only the Dirac string emits from the center of the circle. Magnetic monopole is a topological defect in vector field, which accords with both quantum mechanics and gauge invariance of electromagnetic field. Single magnetic monopole has been studied a lot in theory, and its analogues have been observed in experiment. But multiple monopoles and the interaction between them are still rarely studied. In this paper, multiple monopoles are produced based on the fact that the periodic magnetic field has multiple zeros. We use a new periodic magnetic field to generate a positive and negative magnetic monopole. Due to the strong external magnetic field, the vorticity in the condensate is consistent with the magnetic field of the monopole. Finally, by calculating the superfluid vorticity of the condensate, the characteristic diagram of the magnetic monopole is obtained. The results show that the condensate forms a pair of positive and negative magnetic monopoles at the two zero points of the magnetic field, corresponding to the two small convexities protruding upward and downward on the z-axis of the spin-up state, respectively. As the two zero points of the magnetic field coincide, the two Dirac strings in the positive and negative magnetic monopole gradually approach to each other, and after about 5 ms, they are completely connected, finally forming an isolated Dirac string. This result provides a new idea for further studying the isolated Dirac strings.
      通信作者: 李禄, llz@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61475198, 11705108)资助的课题
      Corresponding author: Li Lu, llz@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475198, 11705108)
    [1]

    Milton K A 2006 Rep. Prog. Phys. 69 1637Google Scholar

    [2]

    Vilenkin A, Shellard E P S 1994 Cosmic Strings and Other Topological Defects (Britain: Cambridge University Press) pp397−399

    [3]

    Guth A H 1981 Phys. Rev. D 23 347Google Scholar

    [4]

    Dirac P A 1931 Proc. R. Soc. Lond. A 133 60Google Scholar

    [5]

    Konstantin Tiurev 2017 Quantum Knots and Monopoles (Finland: School of Science) p19

    [6]

    Blaha S 1976 Phys. Rev. Lett. 36 874Google Scholar

    [7]

    Salomaa M M 1987 Nature 326 367Google Scholar

    [8]

    Volovik G E 2009 The Universe in a Helium Droplet (Britain: Oxford University Press) p214

    [9]

    Castelnovo C, Moessner R, Sondhi S L 2008 Nature 451 42Google Scholar

    [10]

    Morris D J, Tennant D A, Grigera S A, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule K C, Hoffmann J U, Kiefer K, Gerischer S, Slobinsky D, Perry R S 2009 Science 326 411Google Scholar

    [11]

    Chuang I L, Durrer R, Turok N, Yurke B 1991 Science 251 1336Google Scholar

    [12]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervate J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A 2013 Science 340 1076Google Scholar

    [13]

    Choi J, Kang S, Seo S W, Kwon W J, Shin Y 2013 Phys. Rev. Lett. 111 245301Google Scholar

    [14]

    Choi J, Kwon W J, Shin Y 2012 Phys. Rev. Lett. 108 035301Google Scholar

    [15]

    Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403Google Scholar

    [16]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403Google Scholar

    [17]

    Ogawa S, Möttönen M, Nakahara M, Ohmi T, Shimada H 2002 Phys. Rev. A 66 013617Google Scholar

    [18]

    Isoshima T, Nakahara M, Ohmi T, Machida K 2000 Phys. Rev. A 61 063610Google Scholar

    [19]

    石康杰 1983 32 1426Google Scholar

    Shi K J 1983 Acta Phys. Sin. 32 1426Google Scholar

    [20]

    曾伦武, 宋润霞 2012 61 117302Google Scholar

    Zeng L W, Song R X 2012 Acta Phys. Sin. 61 117302Google Scholar

    [21]

    胡国琦, 李康 2002 51 1208Google Scholar

    Hu G Q, Li K 2002 Acta Phys. Sin. 51 1208Google Scholar

    [22]

    Savage C M, Ruostekoski J 2003 Phys. Rev. A 68 043604Google Scholar

    [23]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [24]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404Google Scholar

    [25]

    Pietilä V, Möttönen M 2009 Phys. Rev. Lett. 103 030401Google Scholar

    [26]

    Zhong F, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92Google Scholar

    [27]

    Pietilä V, Möttönen M 2009 Phys. Rev. Lett. 102 080403Google Scholar

    [28]

    Stoof H T C, Vliegen E, Khawaja U A 2001 Phys. Rev. Lett. 87 120407Google Scholar

    [29]

    Jaubert L D C, Holdsworth P C W 2009 Nature Phys. 5 258Google Scholar

    [30]

    Qi X L, Li R D, Zang J D, Zhang S C 2009 Science 323 1184Google Scholar

    [31]

    Ohmi T, Machida K 1998 J. Phys. Soc. Jpn. 67 1822Google Scholar

    [32]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [33]

    Luo H B, Li L, Liu W M 2019 Sci. Rep. 9 18804Google Scholar

  • 图 1  凝聚体处不同时刻的磁场在xoz平面的分布图. 箭头的方向和长度分别表示磁场的方向和大小. 绿色图案为凝聚体所在位置, 凝聚体的半径${R_{{\rm{TF}}}}$可以通过托马斯-费米近似得到: ${R_{{\rm{TF}}}} = 5 N{c_0}/(4 m{\omega ^2}) = 6\;{\rm{{\text{μ}} m}}$, 其中各图分别对应时刻 (a) t = 0; (b) t = 50 ms; (c) t = 55 ms

    Fig. 1.  Distributions of the magnetic field at xoz plane for different timesaround the condensation. Direction and length of arrows indicate the direction and size of the magnetic field. The green pattern indicates the condensation, radius of which is determined by Thomas-Fermi approximation, i.e., ${R_{{\rm{TF}}}} = 5 N{c_0}/(4 m{\omega ^2}) = 6\;{\rm{{\text{μ}} m}}$. (a) t = 0; (b) t = 50 ms; (c) t = 55 ms.

    图 2  不同时刻凝聚体各个组分密度在xoz平面的分布图, 其中各图分别对应时刻 (a) t = 0; (b) t = 50 ms; (c) t = 55 ms; (d) t = 60 ms

    Fig. 2.  Distributions of density of the condensation at xoz-plane for different times: (a) t = 0; (b) t = 50 ms; (c) t = 55 ms; (d) t = 60 ms.

    图 3  第一行是不同时刻涡度场在xoz平面的分布图. 第二行是归一化的涡旋场, 只保留了涡旋场的方向 (a), (b) t = 50 ms; (c), (d) t = 55 ms; (e), (f) t = 60 ms

    Fig. 3.  First row is the distributions of vorticity at xoz-plane for different times. Second row is the corresponding normalized field. (a), (b) t = 50 ms; (c), (d) t = 55 ms; (e), (f) t = 60 ms.

    Baidu
  • [1]

    Milton K A 2006 Rep. Prog. Phys. 69 1637Google Scholar

    [2]

    Vilenkin A, Shellard E P S 1994 Cosmic Strings and Other Topological Defects (Britain: Cambridge University Press) pp397−399

    [3]

    Guth A H 1981 Phys. Rev. D 23 347Google Scholar

    [4]

    Dirac P A 1931 Proc. R. Soc. Lond. A 133 60Google Scholar

    [5]

    Konstantin Tiurev 2017 Quantum Knots and Monopoles (Finland: School of Science) p19

    [6]

    Blaha S 1976 Phys. Rev. Lett. 36 874Google Scholar

    [7]

    Salomaa M M 1987 Nature 326 367Google Scholar

    [8]

    Volovik G E 2009 The Universe in a Helium Droplet (Britain: Oxford University Press) p214

    [9]

    Castelnovo C, Moessner R, Sondhi S L 2008 Nature 451 42Google Scholar

    [10]

    Morris D J, Tennant D A, Grigera S A, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule K C, Hoffmann J U, Kiefer K, Gerischer S, Slobinsky D, Perry R S 2009 Science 326 411Google Scholar

    [11]

    Chuang I L, Durrer R, Turok N, Yurke B 1991 Science 251 1336Google Scholar

    [12]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervate J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A 2013 Science 340 1076Google Scholar

    [13]

    Choi J, Kang S, Seo S W, Kwon W J, Shin Y 2013 Phys. Rev. Lett. 111 245301Google Scholar

    [14]

    Choi J, Kwon W J, Shin Y 2012 Phys. Rev. Lett. 108 035301Google Scholar

    [15]

    Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403Google Scholar

    [16]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403Google Scholar

    [17]

    Ogawa S, Möttönen M, Nakahara M, Ohmi T, Shimada H 2002 Phys. Rev. A 66 013617Google Scholar

    [18]

    Isoshima T, Nakahara M, Ohmi T, Machida K 2000 Phys. Rev. A 61 063610Google Scholar

    [19]

    石康杰 1983 32 1426Google Scholar

    Shi K J 1983 Acta Phys. Sin. 32 1426Google Scholar

    [20]

    曾伦武, 宋润霞 2012 61 117302Google Scholar

    Zeng L W, Song R X 2012 Acta Phys. Sin. 61 117302Google Scholar

    [21]

    胡国琦, 李康 2002 51 1208Google Scholar

    Hu G Q, Li K 2002 Acta Phys. Sin. 51 1208Google Scholar

    [22]

    Savage C M, Ruostekoski J 2003 Phys. Rev. A 68 043604Google Scholar

    [23]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [24]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404Google Scholar

    [25]

    Pietilä V, Möttönen M 2009 Phys. Rev. Lett. 103 030401Google Scholar

    [26]

    Zhong F, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92Google Scholar

    [27]

    Pietilä V, Möttönen M 2009 Phys. Rev. Lett. 102 080403Google Scholar

    [28]

    Stoof H T C, Vliegen E, Khawaja U A 2001 Phys. Rev. Lett. 87 120407Google Scholar

    [29]

    Jaubert L D C, Holdsworth P C W 2009 Nature Phys. 5 258Google Scholar

    [30]

    Qi X L, Li R D, Zang J D, Zhang S C 2009 Science 323 1184Google Scholar

    [31]

    Ohmi T, Machida K 1998 J. Phys. Soc. Jpn. 67 1822Google Scholar

    [32]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [33]

    Luo H B, Li L, Liu W M 2019 Sci. Rep. 9 18804Google Scholar

  • [1] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街.  , 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性.  , 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [4] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控.  , 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [5] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性.  , 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [6] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势.  , 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [10] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备.  , 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [11] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [12] 柴兆亮, 周昱, 马晓栋. 雪茄形铷原子玻色-爱因斯坦凝聚中单极子模的朗道阻尼和频移.  , 2013, 62(13): 130307. doi: 10.7498/aps.62.130307
    [13] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为.  , 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [14] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [15] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [16] 孙旭东, 陈菊华, 王永久. 磁荷对中子星质量半径比的约束.  , 2013, 62(16): 160401. doi: 10.7498/aps.62.160401
    [17] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性.  , 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [18] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [19] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波.  , 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] 薛卫东, 朱正和, 冉鸣, 王红艳, 邹乐西, 孙颖. U+CO体系的分子反应动力学研究.  , 2002, 51(11): 2503-2508. doi: 10.7498/aps.51.2503
计量
  • 文章访问数:  4767
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-12-01
  • 上网日期:  2021-03-19
  • 刊出日期:  2021-04-05

/

返回文章
返回
Baidu
map