搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性

王青青 周玉珊 王静 樊小贝 邵凯花 赵月星 宋燕 石玉仁

引用本文:
Citation:

三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性

王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁

Surface gap solitons and their stabilities in quasi-1D Bose-Einstein condensate with three-body interactions

Wang Qing-Qing, Zhou Yu-Shan, Wang Jing, Fan Xiao-Bei, Shao Kai-Hua, Zhao Yue-Xing, Song Yan, Shi Yu-Ren
PDF
HTML
导出引用
  • 数值研究了具有三体相互作用的均匀介质界面和半无限雅克比椭圆正弦势下准一维玻色-爱因斯坦凝聚体(Bose-Einstein condensate, BEC)中的表面带隙孤子及其稳定性. 在平均场近似下, 其动力学行为可用3次-5次Gross-Pitaevskii方程描述. 首先用牛顿-共轭梯度法寻找表面带隙孤子, 发现表面亮孤子仅当化学势小于0时才可于带隙内激发, 但表面扭结孤子和气泡孤子既可存在于带隙中也可存在于能带中. 然后采用线性稳定性分析和非线性动力学演化研究了孤子的稳定性, 结果表明三体相互作用会明显影响表面亮孤子的稳定性, 表面扭结孤子既有稳定的也有不稳定的, 但表面气泡孤子均不稳定.
    The dynamical stability properties of surface gap solitons in quasi-one-dimensional Bose-Einstein condensate loaded in the interface between uniform media and a semi-infifinite Jacobian elliptic sine potential with three-body interactions are investigated numerically. Under the mean-fifield approximation, the dynamical behaviors can be well-described by the nonlinear cubic-quintic Gross-Pitaevskii equation. Firstly, many kinds of surface gap solitons, including the surface bright solitons, surface kink solitons and surface bubble solitons, are obtained numerically by the Newton-conjugate gradient method. The surface bright solitons can be excited in the gap only for the case that the chemical potential is negative and their power is beyond a threshold value. All of them are not bifurcated from the Bloch band. A class of surface solitons with new structures, named the surface dark solitons, can be formed when the three-body interactions are taken into account. The surface dark solitons can exist not only in gap but also in band. The numerical results indicate that the amplitude of the surface gap solitons decreases as the three-body interaction strength increases. Both linear stability analysis and nonlinear dynamical evolution methods are applied to investigate the stability properties of surface gap solitons. For surface bright solitons in the semi-infinite gap, there is a critical value when the chemical potential is given. The surface bright solitons become linearly stable as the three-body interaction exceeds the critical value, or they are linearly unstable. Therefore, the three-body interaction strength plays an important role on the stability of surface gap solitons. One can change the dynamical behaviors of surface gap solitons by adjusting the three-body interaction strength in experiments. Numerical results also show that both stable and unstable surface kink solitons exist. However, all the surface bubble solitons are unstable.
      通信作者: 石玉仁, shiyr@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12065022, 12147213, 11565021)资助.
      Corresponding author: Shi Yu-Ren, shiyr@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022, 12147213, 11565021).
    [1]

    Ketterle W 2002 Rev. Mod. Phys. 74 1131Google Scholar

    [2]

    Choi D, Qian N 1999 Phys. Rev. Lett. 82 2002Google Scholar

    [3]

    Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401Google Scholar

    [4]

    Hagley E W, Deng L, Kozuma M, Wen J, Helmerson K, Rolston S L, Phillips W D 1999 Science 283 1706Google Scholar

    [5]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [6]

    Saito H, Ueda M 2001 Phy. Rev. Lett. 86 1406Google Scholar

    [7]

    Filho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605Google Scholar

    [8]

    Wang D S, Zhang D J, Yang J K 2010 J. Math. Phys. 51 023510Google Scholar

    [9]

    Tsatsos M C, Tavares P E S, Cidrim A, Fritsch A R, Caracanhas M A, Dos Santos F E A, Barenghi C F, Bagnato V S 2016 Phys. Rep. 622 1Google Scholar

    [10]

    Villois A, Krstulovic G, Proment D, Salman H 2016 J. Phys. A: Math. Theor. 49 415502Google Scholar

    [11]

    Wang D S, Xu L, Xuan Z 2022 J. Nonlinear. Sci. 32 3Google Scholar

    [12]

    唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁 2020 69 010301Google Scholar

    Tang N, Yang X Y, Song L, Zhang J, Li X L, Zhou Z K, Shi Y R 2020 Acta Phys. Sin. 69 010301Google Scholar

    [13]

    Abdullaev F K, Salerno M 2005 Phys. Rev. A 72 033617Google Scholar

    [14]

    Will S, Best T, Schneider U, Hackermuller L, Luehmann D S, Bloch I 2010 Nature 465 197Google Scholar

    [15]

    Daley A J, Simon J 2013 Phys. Rev. A 89 95Google Scholar

    [16]

    Inouye S, Andrews M, Stenger J, Miesner H J, Ketterle W 1998 Nature 392 151Google Scholar

    [17]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [18]

    Tang N, Yang X Y, Feng W X, Song L, Li X L, Zhou Z K, Wang D S, Shi Y R 2019 Phys.A 528 121344Google Scholar

    [19]

    Strecker K E, Partridge G B, Truscott A G 2002 Nature 417 150Google Scholar

    [20]

    Chen Y J, Tran H T 1992 Optics Lett. 17 580Google Scholar

    [21]

    王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明 2020 69 010303Google Scholar

    Wang L, Liu J S, Li J, Zhou X L, Chen X R, Liu C F, Liu W M 2020 Acta Phys. Sin. 69 010303Google Scholar

    [22]

    Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806Google Scholar

    [23]

    Makris K G, Suntsov S, Christodoulides D N, Stegeman G I, Hache A 2005 Optics Lett. 30 2466Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Stegeman G I, Wright E M 1988 J. Lightwave. Technol. 6 953Google Scholar

    [26]

    Mihalache D, Mazilu D, Bertolotti M, Sibilia C 1988 J. Opt. Soc. Am. B 5 565Google Scholar

    [27]

    Kawata S, Koyuncu M, Guvenç A, Baser KHC, Ozek T, Kurucu S, Koyuncu M, Guvenç A 2001 Opt. Laser. Eng. 38 604Google Scholar

    [28]

    Nikitov S A, Wallis R F 1994 Phys. Rev. B 50 998Google Scholar

    [29]

    Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, Zhang X F 2021 Optik 247 167932Google Scholar

    [30]

    Kartashov Y V, Vysloukh V A, Torner L 2006 Phys. Rev. Lett. 96 073901Google Scholar

    [31]

    Wang X, Bezryadina A, Chen Z, Makris K G, Christodoulides D N, Stegeman G I 2007 Phys. Rev. Lett. 12 123903Google Scholar

    [32]

    Rosberg C R, Neshev D N, Krolikowski W, Mitchell A, Kivshar Y S 2006 Phys. Rev. Lett. 97 083901Google Scholar

    [33]

    Sabari S, Porsezian K, Murali R 2015 Phys. Rev. A 379 299Google Scholar

    [34]

    Bulgac A 2002 Phys. Rev. Lett. 89 050402Google Scholar

    [35]

    Braaten E, Hammer H W, Mehen T 2002 Phys. Rev. Lett. 88 040401Google Scholar

    [36]

    Bao W, Liu J G 2007 Chem. J. Chinese. U. 35 1546Google Scholar

    [37]

    Zhou Y S, Meng H J, Zhang J, Li X L, Ren X P, Wan X H, Zhou Z K, Wang J, Fan X B, Shi Y R 2021 Sci. Rep. 11 11382Google Scholar

    [38]

    Kostov N A, Enolśkii V Z, Gerdjikov V S, Konotop V V, Salerno M 2004 Phys. Rev. E 70 056617Google Scholar

    [39]

    Wang D L, Yan X H, Liu W M 2008 Phys. Rev. E 78 026606Google Scholar

    [40]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Vol. 1) (Philadelphia: SIAM) pp269–283

    [41]

    Nascimbene S, Goldman N, Cooper N R, Dalibard J 2015 Phys. Rev. Lett. 115 140401Google Scholar

    [42]

    Yang J K 2009 J. Comput. Phys. 228 7007Google Scholar

    [43]

    Jing X, Tian Z, Huang C, Dong L 2018 Opt. Express. 26 2650Google Scholar

    [44]

    Zuccher S, Caliari M, Baggaley A W, Barenghi C F 2012 Phys. Fluids 24 125108Google Scholar

    [45]

    Allen A J, Zuccher S, Caliari M, Proukakis N P, Parker N G, Barenghi C F 2014 Phys. Rev. A 90 013601Google Scholar

    [46]

    Barashenkov I V, Gocheva A D, Makhankov V G, Puzynin I 1989 Phys. D 34 240Google Scholar

  • 图 1  $ q = 0, 0.8 $$ 0.99 $$ V(x) $的图像. 子图显示了$V(x) $$ (x\geqslant 0)$的周期随q的变化$ (V_0=-2) $

    Fig. 1.  Profiles of $ V(x) $ for $ q = 0, 0.8 $ and $0.99 \;(V_0=-2)$. The sub-plot displays the period of $V(x) (x\geqslant0)$ versus q.

    图 2  (a) 带隙结构随$ V_0 $的变化($ q=0 $). 阴影区域代表能带, 空白区域表示带隙, 垂直虚线指示图(b)—(d)中用到的$ V_0 $值. 蓝色实线处为$ V_0=0 $. (b) $ V_0 = 2 $. (c) $ V_0 = -2 $. (d) $ V_0 = -8 $

    Fig. 2.  Profiles of band-gap structures versus $ V_0 $ ($ q=0 $). Bands are marked with the shaded regions, gaps are shown as blank. The vertical dashed lines identify the values that will be used in panel (b)–(d). (b) $ V_0= 2 $; (c) $ V_0= -2 $; (d) $ V_0= -8 $.

    图 3  不同三体相互作用强度$ g_3 $时的表面带隙孤子 (a), (b) 半无限带隙中; (c), (d) 第一带隙中. 阴影区域表示外势$ V(x) $的低处

    Fig. 3.  Profiles of surface gap solitons under different three-body interaction strength$ g_3 $: (a), (b) In the semi-infinite gap; (c), (d) in the first gap. Shaded regions represent lattice sites, i.e., regions of low potential values of $ V(x) $.

    图 4  (a) 表面带隙孤子粒子数随化学势的变化. 实线表示稳定分支, 虚线表示不稳定分支. 图(b)—(g)分别表示图(a)中标记点处对应的孤子波形. 第一布洛赫带的边缘分别是 $ \mu_0^1\approx-1.22757 $$ \mu_0^2\approx -1.05512 $

    Fig. 4.  (a) Power curves of surface gap solitons, which are not bifurcated from the first band edge. The dashed line are unstable branches, while the solid lines are stable ones. Soliton profiles at the marked points in panel (a) are shown in panel (b)–(g). The edges of the first Bloch band are $ \mu_0^1\approx -1.22757 $ and $ \mu_0^2\approx -1.05512 $.

    图 5  不同参数下表面扭结孤子的波形 (a) 半无界带隙中; (b) 第一带隙中. 阴影区域表示外势$ V(x) $低处

    Fig. 5.  Profiles of surface kink solitons with different parameters. (a) In the semi-infinite gap; (b) in the first gap. Shaded regions represent lattice sites, i.e., regions of low potential values of $ V(x) $.

    图 6  不同非线性相互作用强度$ g_2 $$ g_3 $下表面扭结孤子振幅随化学势μ 的变化 ($ q=0.1 $). 子图为标记点处孤子波形, 阴影区域表示外势$ V(x) $低处. 黑色圆点为相变点

    Fig. 6.  Amplitude of surface kinks versus the chemical potential μ under different nonlinear interaction strength $ g_2 $ and $ g_3 $. The profiles of solitons at the marked points ${P}_1, {P}_2, {P}_3$ are shown in the subplots.

    图 7  表面亮孤子的线性稳定性谱 (a), (b) 半无限带隙中; (c), (d) 第一带隙中. 子图为对应波函数

    Fig. 7.  Linear stability spectrum of surface gap solitons: (a), (b) In the semi-infinite gap; (c), (d) in the first gap. The sub-plots are the corresponding wave functions.

    图 8  不同化学势μ下表面带隙孤子扰动最大增长率$\lambda_{\rm{m}}$随三体相互作用强度$ g_3 $的变化. 表面带隙孤子的波形如图4(b), (e)所示 (a) 半无限带隙中; (b) 第一带隙中

    Fig. 8.  Maximum growth rate of perturbation$\lambda_{\rm{m}}$for the surface gap solitons versus the three-body interaction strength$ g_3 $under different chemical potential μ. The profiles of surface gap solitons are similar as those in Figs. 4(b), (e): (a) In the semi-infinite gap; (b) in the first gap.

    图 9  表面亮孤子非线性动力学演化等值线图 (a), (b) 半无限带隙中; (c), (d) 第一带隙中

    Fig. 9.  Contour plots of $\left|\varPsi(x, t)\right|$ perturbed for surface bright solitons: (a), (b) In the semi-infinite gap; (c), (d) in the first gap.

    图 10  (a) 表面扭结孤子的线性稳定性谱, 子图为相应波函数; (b) 表面扭结孤子非线性动力学演化的等值线图

    Fig. 10.  (a) Linear stability spectrum for the surface kink soliton, and the inset is the corresponding wave function; (b) contour plots of $|\varPsi(x, t)|$ for the surface kink soliton.

    图 11  (a), (c) 表面气泡孤子和表面扭结孤子的线性稳定性谱, 子图为相应波函数. (b), (d) 表面气泡孤子和表面扭结孤子非线性动力学演化的等值线图

    Fig. 11.  (a), (c) Linear stability spectra for the surface bubble and kink solitons. The insets are the corresponding wave functions. (b) Contour plots of $\left|\varPsi(x, t)\right|$ for the surface bubble and kink solitons.

    图 12  不同化学势μ下表面带隙孤子扰动最大增长率$\lambda_{\rm{m}}$随外势模数q的变化 (a) 表面亮孤子, 波形见图4(e); (b) 表面气泡孤子, 波形见图11(a)

    Fig. 12.  Maximum growth rate of perturbation $\lambda_{\rm{m}}$ for the surface gap solitons versus q under different chemical potential μ: (a) For surface bright solitons, and the profiles are similar as that shown in Fig. 4(e); (b) for surface bubble solitons, and the profiles are similar as that shown in Fig. 11(a).

    图 13  $ V_0=2 $时的表面亮孤子和表面扭结孤子 (a) 半无界带隙中; (b) 第一带隙中. 阴影区域表示外势$ V(x) $低处

    Fig. 13.  Profiles of surface bright and kink solitons when $ V_0=2 $: (a) In the semi-infinite gap; (b) in the first gap. Shaded regions represent lattice sites, i.e., regions of low potential values of $ V(x) $.

    Baidu
  • [1]

    Ketterle W 2002 Rev. Mod. Phys. 74 1131Google Scholar

    [2]

    Choi D, Qian N 1999 Phys. Rev. Lett. 82 2002Google Scholar

    [3]

    Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401Google Scholar

    [4]

    Hagley E W, Deng L, Kozuma M, Wen J, Helmerson K, Rolston S L, Phillips W D 1999 Science 283 1706Google Scholar

    [5]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [6]

    Saito H, Ueda M 2001 Phy. Rev. Lett. 86 1406Google Scholar

    [7]

    Filho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605Google Scholar

    [8]

    Wang D S, Zhang D J, Yang J K 2010 J. Math. Phys. 51 023510Google Scholar

    [9]

    Tsatsos M C, Tavares P E S, Cidrim A, Fritsch A R, Caracanhas M A, Dos Santos F E A, Barenghi C F, Bagnato V S 2016 Phys. Rep. 622 1Google Scholar

    [10]

    Villois A, Krstulovic G, Proment D, Salman H 2016 J. Phys. A: Math. Theor. 49 415502Google Scholar

    [11]

    Wang D S, Xu L, Xuan Z 2022 J. Nonlinear. Sci. 32 3Google Scholar

    [12]

    唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁 2020 69 010301Google Scholar

    Tang N, Yang X Y, Song L, Zhang J, Li X L, Zhou Z K, Shi Y R 2020 Acta Phys. Sin. 69 010301Google Scholar

    [13]

    Abdullaev F K, Salerno M 2005 Phys. Rev. A 72 033617Google Scholar

    [14]

    Will S, Best T, Schneider U, Hackermuller L, Luehmann D S, Bloch I 2010 Nature 465 197Google Scholar

    [15]

    Daley A J, Simon J 2013 Phys. Rev. A 89 95Google Scholar

    [16]

    Inouye S, Andrews M, Stenger J, Miesner H J, Ketterle W 1998 Nature 392 151Google Scholar

    [17]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [18]

    Tang N, Yang X Y, Feng W X, Song L, Li X L, Zhou Z K, Wang D S, Shi Y R 2019 Phys.A 528 121344Google Scholar

    [19]

    Strecker K E, Partridge G B, Truscott A G 2002 Nature 417 150Google Scholar

    [20]

    Chen Y J, Tran H T 1992 Optics Lett. 17 580Google Scholar

    [21]

    王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明 2020 69 010303Google Scholar

    Wang L, Liu J S, Li J, Zhou X L, Chen X R, Liu C F, Liu W M 2020 Acta Phys. Sin. 69 010303Google Scholar

    [22]

    Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806Google Scholar

    [23]

    Makris K G, Suntsov S, Christodoulides D N, Stegeman G I, Hache A 2005 Optics Lett. 30 2466Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Stegeman G I, Wright E M 1988 J. Lightwave. Technol. 6 953Google Scholar

    [26]

    Mihalache D, Mazilu D, Bertolotti M, Sibilia C 1988 J. Opt. Soc. Am. B 5 565Google Scholar

    [27]

    Kawata S, Koyuncu M, Guvenç A, Baser KHC, Ozek T, Kurucu S, Koyuncu M, Guvenç A 2001 Opt. Laser. Eng. 38 604Google Scholar

    [28]

    Nikitov S A, Wallis R F 1994 Phys. Rev. B 50 998Google Scholar

    [29]

    Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, Zhang X F 2021 Optik 247 167932Google Scholar

    [30]

    Kartashov Y V, Vysloukh V A, Torner L 2006 Phys. Rev. Lett. 96 073901Google Scholar

    [31]

    Wang X, Bezryadina A, Chen Z, Makris K G, Christodoulides D N, Stegeman G I 2007 Phys. Rev. Lett. 12 123903Google Scholar

    [32]

    Rosberg C R, Neshev D N, Krolikowski W, Mitchell A, Kivshar Y S 2006 Phys. Rev. Lett. 97 083901Google Scholar

    [33]

    Sabari S, Porsezian K, Murali R 2015 Phys. Rev. A 379 299Google Scholar

    [34]

    Bulgac A 2002 Phys. Rev. Lett. 89 050402Google Scholar

    [35]

    Braaten E, Hammer H W, Mehen T 2002 Phys. Rev. Lett. 88 040401Google Scholar

    [36]

    Bao W, Liu J G 2007 Chem. J. Chinese. U. 35 1546Google Scholar

    [37]

    Zhou Y S, Meng H J, Zhang J, Li X L, Ren X P, Wan X H, Zhou Z K, Wang J, Fan X B, Shi Y R 2021 Sci. Rep. 11 11382Google Scholar

    [38]

    Kostov N A, Enolśkii V Z, Gerdjikov V S, Konotop V V, Salerno M 2004 Phys. Rev. E 70 056617Google Scholar

    [39]

    Wang D L, Yan X H, Liu W M 2008 Phys. Rev. E 78 026606Google Scholar

    [40]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Vol. 1) (Philadelphia: SIAM) pp269–283

    [41]

    Nascimbene S, Goldman N, Cooper N R, Dalibard J 2015 Phys. Rev. Lett. 115 140401Google Scholar

    [42]

    Yang J K 2009 J. Comput. Phys. 228 7007Google Scholar

    [43]

    Jing X, Tian Z, Huang C, Dong L 2018 Opt. Express. 26 2650Google Scholar

    [44]

    Zuccher S, Caliari M, Baggaley A W, Barenghi C F 2012 Phys. Fluids 24 125108Google Scholar

    [45]

    Allen A J, Zuccher S, Caliari M, Proukakis N P, Parker N G, Barenghi C F 2014 Phys. Rev. A 90 013601Google Scholar

    [46]

    Barashenkov I V, Gocheva A D, Makhankov V G, Puzynin I 1989 Phys. D 34 240Google Scholar

  • [1] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街.  , 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控.  , 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [4] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性.  , 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [5] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [6] 焦婧, 罗焕波, 李禄. 由正负磁单极对相互作用诱导的孤立狄拉克弦.  , 2021, 70(7): 071401. doi: 10.7498/aps.70.20201744
    [7] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [8] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [9] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性.  , 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [10] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备.  , 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [11] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控.  , 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [12] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [13] 郗玉兴, 单传家, 黄燕霞. 带有三体相互作用的XXZ自旋链模型的隐形传态.  , 2014, 63(11): 110305. doi: 10.7498/aps.63.110305
    [14] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [15] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为.  , 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [16] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [17] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变.  , 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [18] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性.  , 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [19] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [20] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波.  , 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
计量
  • 文章访问数:  3330
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2023-01-10
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-05-20

/

返回文章
返回
Baidu
map