搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于α-MoO3的可调谐法布里-珀罗谐振腔比色生物传感器

魏晨崴 曹暾

引用本文:
Citation:

基于α-MoO3的可调谐法布里-珀罗谐振腔比色生物传感器

魏晨崴, 曹暾

α-MoO3 based tunable Fabry-Pérot cavity colorimetric biosensor

Wei Chen-Wei, Cao Tun
PDF
HTML
导出引用
  • 生物传感器是近年来的热点研究方向, 其中基于折射率变化的光学传感器在灵敏度方面具有很大优势. 本文基于α-MoO3设计了一种集成微流腔的法布里-珀罗谐振腔比色生物传感器. 理论分析了BK7/Ag/SiO2作为谐振腔反射面的可行性, 并进一步用传输矩阵法分析了所设计的比色生物传感器的透射光谱. 当微流腔通过不同浓度的NaCl溶液时, 比色生物传感器显示出明显的颜色变化. 该比色生物传感器灵敏度最高可达600 nm/RIU, 可分辨NaCl溶液9‰的浓度变化. 由于α-MoO3具有独特的各向异性的光学性质, 该比色传感器可以通过简单的旋转设备实现工作波长的调节以更好地适应人眼的光敏感区. 另一方面, 调节微流腔的厚度也改变该比色生物传感器的工作波长. 该比色生物传感器具有结构简单、易于集成、操作成本低、实时检测等优点,为以后设计可调谐比色传感器提供了一种新的选择.
    Biosensor has received increasing attention in recent years due to the demand for detecting biological and chemical substances in liquid. In particular, the detection methods based on refractive index have advantages in detection sensitivity. Colorimetric biosensor can transform the change in refractive index of target into the change in color, which has advantages in simple operation, low cost and real-time detection with naked human eyes. In this work, a Fabry-Pérot cavity colorimetric biosensor based on α-MoO3 integrating microfluidic channel is proposed. The α-MoO3 is an emerging natural two-dimensional van der Waals material with anisotropic optical properties due to its unique crystal structure. Theoretical analysis of the feasibility of BK7/Ag/SiO2 as the reflective layers is carried out. And the transmittance spectra of the proposed colorimetric biosensor are calculated by the transfer-matrix method. The obvious color changes can be observed when the microfluidic channel filled with NaCl solutions with different concentrations. The proposed colorimetric biosensor achieves a high detection sensitivity of 600 nm/RIU, which can detect a concentration change of NaCl solution as low as 9‰. The proposed colorimetric biosensor can tune the operating wavelength by simply rotating the device due to the anisotropic optical properties of α-MoO3 to satisfy the color vision of human eyes. Moreover, by tuning the thickness of microfluidic channel, the operating wavelength of colorimetric biosensor can be further shifted. Our approach offers a new direction for developing tunable biosensors with low cost and real-time detection.
      通信作者: 曹暾, caotun1806@dlut.edu.cn
      Corresponding author: Cao Tun, caotun1806@dlut.edu.cn
    [1]

    Ferreira M F S, Statkiewicz-Barabach G, Kowal D, Mergo P, Urbanczyk W, Frazao O 2017 Opt. Commun. 394 37Google Scholar

    [2]

    Takahashi T, Hizawa T, Misawa N, Taki M, Sawada K, Takahashi K 2018 J. Micromech. Microeng. 28 054002Google Scholar

    [3]

    Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764Google Scholar

    [4]

    Domachuk P, Littler I C M, Cronin-Golomb M, Eggleton B J 2006 Appl. Phys. Lett. 88 093513Google Scholar

    [5]

    Shao L Y, Zhang A P, Liu W S, Fu H Y, He S L 2007 IEEE Photonics Technol. Lett. 19 30Google Scholar

    [6]

    Qian Y, Zhao Y, Wu Q L, Yang Y 2018 Sens. Actuators, B 260 86Google Scholar

    [7]

    Kamil Y M, Abu Bakar M H, Mustapa M A, Yaacob M H, Abidin N H Z, Syahir A, Lee H J, Mandi M A 2018 Sens. Actuators, B 257 820Google Scholar

    [8]

    Huang J G, Lee C L, Lin H M, Chuang T L, Wang W S, Juang R H, Wang C H, Lee C K, Lin S M, Lin C W 2006 Biosens. Bioelectron. 22 519Google Scholar

    [9]

    Pérot A, Fabry C 1899 Astrophys. J. 9 87Google Scholar

    [10]

    Vaughan M 1989 The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Boca Raton: CRC Press)

    [11]

    Guo Y B, Li H, Reddy K, Shelar H S, Nittoor V R, Fan X D 2011 Appl. Phys. Lett. 98 041104Google Scholar

    [12]

    Surdo S, Barillaro G 2015 Opt. Express 23 9192Google Scholar

    [13]

    You K E, Uddin N, Kim T H, Fan Q H, Yoon H J 2018 Sens. Actuators, B 277 62Google Scholar

    [14]

    Uddin N, Shrestha M, Zheng B C, Yoon H J, Wang X Q, Fan Q H 2017 IEEE Sens. J. 17 7348Google Scholar

    [15]

    Yan F, Li L, Wang R X, Tian H, Liu J L, Liu J Q, Tian F J, Zhang J Z 2019 J. Lightwave Technol. 37 1103Google Scholar

    [16]

    Wang Q X, Guo J, Ding Z J, Qi D Y, Jiang J Z, Wang Z, Chen W, Xiang Y J, Zhang W J, Wee A T S 2017 Nano Lett. 17 7593Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [18]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Luo M M, Fan T J, Zhou Y, Zhang H, Mei L 2019 Adv. Funct. Mater. 29 1808306Google Scholar

    [20]

    Liu Z Z, Wells S A, Butun S, Palacios E, Hersam M C, Aydin K 2018 Nanotechnology 29 285202Google Scholar

    [21]

    Liu Z Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar

    [22]

    Song X L, Liu Z H, Xiang Y J, Aydin K 2018 Opt. Express 26 5469Google Scholar

    [23]

    Mao N N, Tang J Y, Xie L M, Wu J X, Han B W, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar

    [24]

    Huang S X, Tatsumi Y, Ling X, Guo H H, Wang Z Q, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964Google Scholar

    [25]

    Al-Abbas S S A, Muhsin M K, Jappor H R 2018 Chem. Phys. Lett. 713 46Google Scholar

    [26]

    Susoma J, Lahtinen J, Kim M, Riikonen J, Lipsanen H 2017 AIP Adv. 7 015014Google Scholar

    [27]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552Google Scholar

    [28]

    Laturia A, Van de Put M L, Vandenberghe W G 2018 Npj 2 D Mater. Appl. 2 1Google Scholar

    [29]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [30]

    Yang H, Jussila H, Autere A, Komsa H P, Ye G J, Chen X H, Hasan T, Sun Z P 2017 ACS Photonics 4 3023Google Scholar

    [31]

    Yang S X, Liu Y, Wu M H, Zhao L D, Lin Z Y, Cheng H C, Wang Y L, Jiang C B, Wei S H, Huang L, Huang Y, Duan X F 2018 Nano Res. 11 554Google Scholar

    [32]

    Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B, Wu Y Q 2016 Adv. Mater. 28 3481Google Scholar

    [33]

    Zheng Z B, Chen J N, Wang Y, Wang X M, Chen X B, Liu P Y, Xu J B, Xie W G, Chen H J, Deng S Z, Xu N S 2018 Adv. Mater. 30 1705381Google Scholar

    [34]

    Ma W L, Alonso-Gonzalez P, Li S J, Nikitin A Y, Yuan J, Martin-Sanchez J, Taboada-Gutierrez J, Amenabar I, Li P N, Velez S, Tollan C, Dai Z G, Zhang Y P, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R, Bao Q L 2018 Nature 562 557Google Scholar

    [35]

    Zheng Z B, Xu N S, Oscurato S L, Tamagnone M, Sun F S, Jiang Y Z, Ke Y L, Chen J N, Huang W C, Wilson W L, Ambrosio A, Deng S Z, Chen H J 2019 Sci. Adv. 5 eaav8690Google Scholar

    [36]

    Tamagnone M, Chaudhary K, Zhu A, Meretska M, Li J, Edgar J H, Ambrosio A, Capasso F 2020 arXiv e-prints: 1905.02177 v2 [physics.optics]

    [37]

    Sreekanth K V, Ouyang Q L, Sreejith S, Zeng S W, Lishu W, Ilker E, Dong W L, ElKabbash M, Ting Y, Lim C T, Hinczewski M, Strangi G, Yong K T, Simpson R E, Singh R 2019 Adv. Opt. Mater. 7 1900081Google Scholar

    [38]

    Zou X J, Zheng G G, Chen Y Y, Xian F L, Xu L H 2019 Opt. Mater. 88 54Google Scholar

    [39]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633Google Scholar

    [40]

    Fernandes A C, Gernaey K V, Kruhne U 2018 Biotechnol. Adv. 36 1341Google Scholar

    [41]

    Prayakarao S, Mendoza B, Devine A, Kyaw C, van Dover R B, Liberman V, Noginov M A 2016 Appl. Phys. Lett. 109 061105Google Scholar

    [42]

    Gholipour B, Piccinotti D, Karvounis A, MacDonald K F, Zheludev N I 2019 Nano Lett. 19 1643Google Scholar

    [43]

    Gosmanov A R, Gosmanova E O, Dillard-Cannon E 2014 Diabet. Metab. Synd. Ob. 7 255

    [44]

    Pascoe K J 2001 Reflectivity and Transmissivity Through Layered, Lossy Media: a User-friendly Approach (US, Ohio: Air Force Inst. of Tech. Wright-PattersonAFB, OH, School of Engineering) AFIT/EN-TR-01-07[Technical Report]

    [45]

    Wolter H 1966 Z. Angew. Phys. 21 565

    [46]

    Tan C Y, Huang Y X 2015 J. Chem. Eng. Data 60 2827Google Scholar

    [47]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [48]

    Wei C W, Dereshgi S A, Song X L, Murthy A, Dravid V P, Cao T, Aydin K 2020 Adv. Opt. Mater. 8 2000088Google Scholar

    [49]

    胡威捷, 汤顺青, 朱正芳 2007 现代颜色技术原理及应用 (北京: 北京理工大学出版社) 第24页

    Tang W J, Tang S Q, Zhu Z F 2007 Principle and Application of Modern Color Technology (Beijing: Beijing Institute of Technology Press) p24 (in Chinese)

  • 图 1  基于α-MoO3的FP谐振腔生物传感器 (a) 3D示意图; (b)剖面示意图. 插图为层状斜方晶α-MoO3结构示意图, 层间由范德瓦尔斯力约束

    Fig. 1.  Schematic of FP cavity biosensor based on α-MoO3: (a) 3D view; (b) cross-sectional view. The inset is the illustration of orthorhombic α-MoO3 with layered structure held by van der Waals’ forces.

    图 2  三种结构的透射光谱, 包括单层BK7, BK7/Ag和BK7/Ag/SiO2

    Fig. 2.  Transmittance spectrum of three different structure, including single layer BK7, BK7/Ag and BK7/Ag/SiO2.

    图 3  入射光分别为 (a) x偏振光(φ = 0°)和(b) y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(300 nm)的透射光谱图; (c) 入射光分别为x偏振光(φ = 0°)和y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(300 nm)的色彩图

    Fig. 3.  Transmittance spectrum of the FP cavity biosensor on (a) x polarization (φ = 0°) and (b) y polarization (φ = 90°) while the micofluidic chamber (300 nm) was filled with NaCl solution in different concentration; (c) colormap for NaCl solution in different concentration filled in micofluidic chamber (300 nm) at x polarization (φ = 0°) and y polarization (φ = 90°).

    图 4  x偏振光下和y偏振光下基于α-MoO3的FP谐振腔生物传感器透射峰波长随折射率变化, 微流腔厚度为300 nm

    Fig. 4.  The peak wavelength of transmittance spertrum of FP cavity biosensor based on α-MoO3 on x polarization and y polarization as a function of refractive index, while the thickness of microfluic chamber is 300 nm.

    图 5  入射光分别为 (a) x偏振光(φ = 0°)和(b) y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(550 nm)的透射光谱图; (c) 入射光分别为x偏振光(φ = 0°)和y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(550 nm)的色彩图

    Fig. 5.  Transmittance spectrum of the FP cavity biosensor on (a) x polarization (φ = 0°) and (b) y polarization (φ = 90°) while the micofluidic chamber (550 nm) was filled with NaCl solution in different concentration; (c) colormap for NaCl solution in different concentration filled in micofluidic chamber (550 nm) at x polarization (φ = 0°) and y polarization (φ = 90°).

    图 6  x偏振光下和y偏振光下基于α-MoO3的FP谐振腔生物传感器透射峰波长随折射率变化, 微流腔厚度为550 nm

    Fig. 6.  The peak wavelength of transmittance spertrum of FP cavity biosensor based on α-MoO3 on x polarization and y polarization as a function of refractive index, while the thickness of microfluic chamber is 550 nm.

    表 1  TMM计算FP谐振腔透射光谱所用的参数

    Table 1.  Parameter for simulation of transmittance spectrum of proposed FP cavity biosensor using TMM.

    材料折射率厚度
    基底BK71.515Inf.
    1Agdrude模型[47]30 nm
    2SiO21.4583 nm
    3纯水1.333
    5% NaCl溶液1.3418
    10% NaCl溶液1.3505
    15% NaCl溶液1.3594
    20% NaCl溶液1.3684
    25% NaCl溶液1.3778
    4α-MoO3drude模型[48]100 nm
    5SiO21.4583 nm
    6Agdrude模型[47]30 nm
    基底BK71.515Inf.
    下载: 导出CSV
    Baidu
  • [1]

    Ferreira M F S, Statkiewicz-Barabach G, Kowal D, Mergo P, Urbanczyk W, Frazao O 2017 Opt. Commun. 394 37Google Scholar

    [2]

    Takahashi T, Hizawa T, Misawa N, Taki M, Sawada K, Takahashi K 2018 J. Micromech. Microeng. 28 054002Google Scholar

    [3]

    Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764Google Scholar

    [4]

    Domachuk P, Littler I C M, Cronin-Golomb M, Eggleton B J 2006 Appl. Phys. Lett. 88 093513Google Scholar

    [5]

    Shao L Y, Zhang A P, Liu W S, Fu H Y, He S L 2007 IEEE Photonics Technol. Lett. 19 30Google Scholar

    [6]

    Qian Y, Zhao Y, Wu Q L, Yang Y 2018 Sens. Actuators, B 260 86Google Scholar

    [7]

    Kamil Y M, Abu Bakar M H, Mustapa M A, Yaacob M H, Abidin N H Z, Syahir A, Lee H J, Mandi M A 2018 Sens. Actuators, B 257 820Google Scholar

    [8]

    Huang J G, Lee C L, Lin H M, Chuang T L, Wang W S, Juang R H, Wang C H, Lee C K, Lin S M, Lin C W 2006 Biosens. Bioelectron. 22 519Google Scholar

    [9]

    Pérot A, Fabry C 1899 Astrophys. J. 9 87Google Scholar

    [10]

    Vaughan M 1989 The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Boca Raton: CRC Press)

    [11]

    Guo Y B, Li H, Reddy K, Shelar H S, Nittoor V R, Fan X D 2011 Appl. Phys. Lett. 98 041104Google Scholar

    [12]

    Surdo S, Barillaro G 2015 Opt. Express 23 9192Google Scholar

    [13]

    You K E, Uddin N, Kim T H, Fan Q H, Yoon H J 2018 Sens. Actuators, B 277 62Google Scholar

    [14]

    Uddin N, Shrestha M, Zheng B C, Yoon H J, Wang X Q, Fan Q H 2017 IEEE Sens. J. 17 7348Google Scholar

    [15]

    Yan F, Li L, Wang R X, Tian H, Liu J L, Liu J Q, Tian F J, Zhang J Z 2019 J. Lightwave Technol. 37 1103Google Scholar

    [16]

    Wang Q X, Guo J, Ding Z J, Qi D Y, Jiang J Z, Wang Z, Chen W, Xiang Y J, Zhang W J, Wee A T S 2017 Nano Lett. 17 7593Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [18]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Luo M M, Fan T J, Zhou Y, Zhang H, Mei L 2019 Adv. Funct. Mater. 29 1808306Google Scholar

    [20]

    Liu Z Z, Wells S A, Butun S, Palacios E, Hersam M C, Aydin K 2018 Nanotechnology 29 285202Google Scholar

    [21]

    Liu Z Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar

    [22]

    Song X L, Liu Z H, Xiang Y J, Aydin K 2018 Opt. Express 26 5469Google Scholar

    [23]

    Mao N N, Tang J Y, Xie L M, Wu J X, Han B W, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar

    [24]

    Huang S X, Tatsumi Y, Ling X, Guo H H, Wang Z Q, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964Google Scholar

    [25]

    Al-Abbas S S A, Muhsin M K, Jappor H R 2018 Chem. Phys. Lett. 713 46Google Scholar

    [26]

    Susoma J, Lahtinen J, Kim M, Riikonen J, Lipsanen H 2017 AIP Adv. 7 015014Google Scholar

    [27]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552Google Scholar

    [28]

    Laturia A, Van de Put M L, Vandenberghe W G 2018 Npj 2 D Mater. Appl. 2 1Google Scholar

    [29]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [30]

    Yang H, Jussila H, Autere A, Komsa H P, Ye G J, Chen X H, Hasan T, Sun Z P 2017 ACS Photonics 4 3023Google Scholar

    [31]

    Yang S X, Liu Y, Wu M H, Zhao L D, Lin Z Y, Cheng H C, Wang Y L, Jiang C B, Wei S H, Huang L, Huang Y, Duan X F 2018 Nano Res. 11 554Google Scholar

    [32]

    Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B, Wu Y Q 2016 Adv. Mater. 28 3481Google Scholar

    [33]

    Zheng Z B, Chen J N, Wang Y, Wang X M, Chen X B, Liu P Y, Xu J B, Xie W G, Chen H J, Deng S Z, Xu N S 2018 Adv. Mater. 30 1705381Google Scholar

    [34]

    Ma W L, Alonso-Gonzalez P, Li S J, Nikitin A Y, Yuan J, Martin-Sanchez J, Taboada-Gutierrez J, Amenabar I, Li P N, Velez S, Tollan C, Dai Z G, Zhang Y P, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R, Bao Q L 2018 Nature 562 557Google Scholar

    [35]

    Zheng Z B, Xu N S, Oscurato S L, Tamagnone M, Sun F S, Jiang Y Z, Ke Y L, Chen J N, Huang W C, Wilson W L, Ambrosio A, Deng S Z, Chen H J 2019 Sci. Adv. 5 eaav8690Google Scholar

    [36]

    Tamagnone M, Chaudhary K, Zhu A, Meretska M, Li J, Edgar J H, Ambrosio A, Capasso F 2020 arXiv e-prints: 1905.02177 v2 [physics.optics]

    [37]

    Sreekanth K V, Ouyang Q L, Sreejith S, Zeng S W, Lishu W, Ilker E, Dong W L, ElKabbash M, Ting Y, Lim C T, Hinczewski M, Strangi G, Yong K T, Simpson R E, Singh R 2019 Adv. Opt. Mater. 7 1900081Google Scholar

    [38]

    Zou X J, Zheng G G, Chen Y Y, Xian F L, Xu L H 2019 Opt. Mater. 88 54Google Scholar

    [39]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633Google Scholar

    [40]

    Fernandes A C, Gernaey K V, Kruhne U 2018 Biotechnol. Adv. 36 1341Google Scholar

    [41]

    Prayakarao S, Mendoza B, Devine A, Kyaw C, van Dover R B, Liberman V, Noginov M A 2016 Appl. Phys. Lett. 109 061105Google Scholar

    [42]

    Gholipour B, Piccinotti D, Karvounis A, MacDonald K F, Zheludev N I 2019 Nano Lett. 19 1643Google Scholar

    [43]

    Gosmanov A R, Gosmanova E O, Dillard-Cannon E 2014 Diabet. Metab. Synd. Ob. 7 255

    [44]

    Pascoe K J 2001 Reflectivity and Transmissivity Through Layered, Lossy Media: a User-friendly Approach (US, Ohio: Air Force Inst. of Tech. Wright-PattersonAFB, OH, School of Engineering) AFIT/EN-TR-01-07[Technical Report]

    [45]

    Wolter H 1966 Z. Angew. Phys. 21 565

    [46]

    Tan C Y, Huang Y X 2015 J. Chem. Eng. Data 60 2827Google Scholar

    [47]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [48]

    Wei C W, Dereshgi S A, Song X L, Murthy A, Dravid V P, Cao T, Aydin K 2020 Adv. Opt. Mater. 8 2000088Google Scholar

    [49]

    胡威捷, 汤顺青, 朱正芳 2007 现代颜色技术原理及应用 (北京: 北京理工大学出版社) 第24页

    Tang W J, Tang S Q, Zhu Z F 2007 Principle and Application of Modern Color Technology (Beijing: Beijing Institute of Technology Press) p24 (in Chinese)

  • [1] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响.  , 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [2] 万震, 李成, 刘宇健, 宋学锋, 樊尚春. 石墨烯谐振式力学量传感器研究进展.  , 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [3] 许诗瑶, 吴祎玮, 周燕, 尹向阳, 甘梨, 李雅鹃, 刘铭彧, 宋宏甲, 王金斌, 钟向丽. 快速响应恢复的PI-SiO2/NiI2比色湿度传感器.  , 2022, 71(2): 020701. doi: 10.7498/aps.71.20211376
    [4] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器.  , 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [5] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [6] 许诗瑶, 钟向丽, 吴祎玮. 快速响应恢复的 PI-SiO2/NiI2比色湿度传感器.  , 2021, (): . doi: 10.7498/aps.70.20211376
    [7] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器.  , 2021, (): . doi: 10.7498/aps.70.20211420
    [8] 罗实, 魏大鹏, 魏大程. 二维材料在生物传感器中的应用.  , 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [9] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器.  , 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [10] 单欣, 王芳, 胡凯, 魏俊青, 林欣, 赵轩宇, 周宝增, 张楷亮. 大面积α-MoO3的制备及其存储计算研究进展.  , 2021, 70(9): 098103. doi: 10.7498/aps.70.20201813
    [11] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器.  , 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [12] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器.  , 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [13] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究.  , 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [14] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [15] 桂鑫, 胡陈晨, 谢莹, 李政颖. 分布式本征型法布里-珀罗传感器的研究.  , 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [16] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究.  , 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [17] 吕江涛, 王凤文, 马振鹤, 司光远. 基于法布里-珀罗腔的纳米环滤光器.  , 2013, 62(5): 057804. doi: 10.7498/aps.62.057804
    [18] 王翥, 王祁, 魏德宝, 王玲. 无线传感器网络中继节点布居算法的研究.  , 2012, 61(12): 120505. doi: 10.7498/aps.61.120505
    [19] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [20] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究.  , 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
计量
  • 文章访问数:  6625
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-10-13
  • 上网日期:  2021-02-07
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map