-
同轴纳米环结构由于具有特殊的光学特性, 近年来引起了科学界的广泛关注. 本文将重点研究在以纳米环形结构为基础的法布里-珀罗腔中所存 在的两种形式的表面等离子共振, 平面型和传输型. 通过使用固定圆环阵列的周期而只改变圆环孔径大小的方法来实现调 节传输型共振并达到滤波的效果. 同时, 控制圆环阵列的周期使其足够大, 从而使得平面型共振峰位于近红外波段, 以避免对处于可见光波段的传输型共振模式形成干扰, 最终实现滤光效果. 在实验中, 通过使用周期固定为1200 nm而孔径大小从10到180 nm (以10 nm递增)的同轴圆环结构, 实现了把一束宽带的白光源分成不同颜色的单色光. 实验结果表明, 该方法解决了天线凹槽和一维层堆光栅型滤光器都普遍存在的偏振敏感性问题, 使得类似滤光器件的应用范围更广, 更能适应非偏振的自然光. 通过有限时域差分法分析得到的理论计算结果和实验结果相匹配, 实验现象得到了很好的理论支持和解释.Coaxial nanoring structures have attracted extensive attention in recent years due to their peculiar optical properties. In this article, we investigate two different types of resonances in plasmonic Fabry-Pérot cavities, planar surface plasmon and propagating surface plasmon. Using nanoring arrays with the same periodicity and different gaps, we can tune propagating surface plasmons and finally filter individual colors out. With large periodicities, planar surface plasmon resonance can be fixed in the near infrared range to avoid any disturbance on propagating surface plasmon resonance which is located in visible frequencies. In this work, we filter a broadband white source into different colors by using nanoring arrays with a fixed periodicity of 1200 nm and varying gaps range from 10 nm to 180 nm (in steps of 10 nm). Compared with one-dimensional nanoslits or metal-insulator-metal (MIM) nanogratings, nanoring structures present polarization independence to the incident light, leading to more functional devices and broader applications (applicable to natural light, for instance). Finite-difference time-domain (FDTD) simulations accord well with measurements, which confirms our conclusions and supports our explanations.
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1997 Nature 391 667
[2] Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P Y 2008 Acta Phys. Sin. 57 3862 (in Chinese) [王凯, 杨光, 龙华, 李玉华, 戴能利, 陆培祥 2008 57 3862]
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[5] Laux E, Genet C, Skauli T, Ebbesen T W 2008 Nat. Photonics 2 161
[6] Mo D, Liu J, Duan J L, Yao H J, Hou M D, Sun Y M, Chen Y F, Xue Z H, Zhang L 2009 Acta Phys. Sin. 58 2599 (in Chinese) [莫丹, 刘杰, 段敬来, 姚会军, 侯明东, 孙友梅, 陈艳峰, 薛智浩, 张苓 2009 58 2599]
[7] Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese) [李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 60 047807]
[8] Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 59 3302]
[9] Li S, Zhong M L, Zhang L J, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 087806 (in Chinese) [李山, 钟明亮, 张礼杰, 熊祖洪, 张中月 2011 60 087806]
[10] Wang K, Long H, Fu M, Yang G, Lu P X 2010 Opt. Lett. 35 1560
[11] Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59
[12] Park H J, Xu T, Lee J Y, Ledbetter A, Guo L J 2011 ACS Nano 5 7055
[13] Cho E H, Kim H S, Cheong B H, Prudnikov O, Xianyua W, Sohn J S, Ma D J, Choi H Y, Park N C, Park Y P 2009 Opt. Express 17 8621
[14] Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier K B 2011 Nano Lett. 11 1851
[15] Ellenbogen T, Seo K, Crozier K B 2012 Nano Lett. 12 1026
[16] Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月2012 61 027803]
[17] Si G Y, Teo E J, Bettiol A A, Teng J H, Danner A J 2010 J. Vac. Sci. Technol. B 28 316
[18] Si G Y, Danner A J, Teo S L, Teo E J, Teng J H, Bettiol A A 2011 J. Vac. Sci. Technol. B 29 021205
[19] Haftel M I, Schlockermann C, Blumberg G 2007 Appl. Phys. Lett. 90 251107
[20] Poujet Y, Salvi J, Baida F I 2007 Opt. Lett. 32 2942
-
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1997 Nature 391 667
[2] Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P Y 2008 Acta Phys. Sin. 57 3862 (in Chinese) [王凯, 杨光, 龙华, 李玉华, 戴能利, 陆培祥 2008 57 3862]
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[5] Laux E, Genet C, Skauli T, Ebbesen T W 2008 Nat. Photonics 2 161
[6] Mo D, Liu J, Duan J L, Yao H J, Hou M D, Sun Y M, Chen Y F, Xue Z H, Zhang L 2009 Acta Phys. Sin. 58 2599 (in Chinese) [莫丹, 刘杰, 段敬来, 姚会军, 侯明东, 孙友梅, 陈艳峰, 薛智浩, 张苓 2009 58 2599]
[7] Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese) [李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 60 047807]
[8] Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 59 3302]
[9] Li S, Zhong M L, Zhang L J, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 087806 (in Chinese) [李山, 钟明亮, 张礼杰, 熊祖洪, 张中月 2011 60 087806]
[10] Wang K, Long H, Fu M, Yang G, Lu P X 2010 Opt. Lett. 35 1560
[11] Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59
[12] Park H J, Xu T, Lee J Y, Ledbetter A, Guo L J 2011 ACS Nano 5 7055
[13] Cho E H, Kim H S, Cheong B H, Prudnikov O, Xianyua W, Sohn J S, Ma D J, Choi H Y, Park N C, Park Y P 2009 Opt. Express 17 8621
[14] Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier K B 2011 Nano Lett. 11 1851
[15] Ellenbogen T, Seo K, Crozier K B 2012 Nano Lett. 12 1026
[16] Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月2012 61 027803]
[17] Si G Y, Teo E J, Bettiol A A, Teng J H, Danner A J 2010 J. Vac. Sci. Technol. B 28 316
[18] Si G Y, Danner A J, Teo S L, Teo E J, Teng J H, Bettiol A A 2011 J. Vac. Sci. Technol. B 29 021205
[19] Haftel M I, Schlockermann C, Blumberg G 2007 Appl. Phys. Lett. 90 251107
[20] Poujet Y, Salvi J, Baida F I 2007 Opt. Lett. 32 2942
计量
- 文章访问数: 8255
- PDF下载量: 1004
- 被引次数: 0