-
人为操控电子的内禀自由度是现代电子器件的核心和关键. 如今电子的电荷和自旋自由度已经被广泛地应用于逻辑计算与信息存储. 以二维过渡金属硫属化合物为代表的二维原子层材料由于其具有独特的谷自由度和优异的物理性质, 成为了新型谷电子学器件研究的优选材料体系. 本文介绍了能谷的基本概念、谷材料的基本物理性质、谷效应的调控和谷电子学器件的研究进展, 并对谷电子学材料和器件的研究进行了总结与展望.
-
关键词:
- 二维过渡金属硫属化合物 /
- 谷电子学
Artificial manipulation of electronic degrees of freedom is the key point to realize modern electronic devices. Both charge and spin of electron have been widely studied and applied to logic circuits and information storage devices. Valley, the unique degree of freedom of crystal electrons, has also attracted great attention of the researchers in the past decade. The valleytronics progress benefits from the tremendous improvements of the two-dimensional atomic layer material growth technologies and in-depth explorations of valley properties. Valleytronic materials, represented by two-dimensional transition metal dichalcogenides, have become an excellent platform for the research and design of new electronic devices due to their special optical responses and distinctive electronic transport properties. The valley devices have the advantages of fast operation, low energy consumption, less information loss, high integration and long transmission distance. In this review, we first introduce the basic concepts and properties of the energy valley, such as the valley Hall effect and the valley circular dichroism. Second, we describe the crystal structures and energy band diagrams of the two-dimensional transition metal dichalcogenides. Third, the progress in artificial manipulation of the valley effects is summarized. Some approaches which can break the inversion symmetry and therefore induce the valley degree of freedom are introduced. Fourth, we discuss the methods of realizing valley polarization. Fifth, the developments of valleytronic devices in recent years are reviewed. Finally, a summary and an outlook are given. [1] Urbaszek B, Marie X 2015 Nature Phys. 11 94
Google Scholar
[2] Amet F, Finkelstein G 2015 Nature Phys. 11 989
Google Scholar
[3] Li X, Moody G 2017 Nature Phys. 13 9
Google Scholar
[4] Yu H, Yao W 2017 Nat. Mater. 16 876
Google Scholar
[5] Zhang F 2018 Nature Phys. 14 111
Google Scholar
[6] Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809
Google Scholar
[7] Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406
Google Scholar
[8] Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
Google Scholar
[9] Xie L, Cui X D 2016 P. Natl. Acad. Sci. 113 3746
Google Scholar
[10] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotech. 11 598
Google Scholar
[11] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D, Rothschild M 2018 Small 14 1801483
Google Scholar
[12] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055
Google Scholar
[13] Sham L J, Allen S J Jr, Kamgar A, Tsui D C 1978 Phys. Rev. Lett. 40 472
Google Scholar
[14] Ohkawa F J, Uemura Y 1977 J. Phys. Soc. Jpn. 43 907
Google Scholar
[15] Shkolnikov Y P, De Poortere E P, Tutuc E, Shayegan M 2002 Phys. Rev. Lett. 89 226805
Google Scholar
[16] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404
Google Scholar
[17] Koiller B, Hu X, Das Sarma S 2002 Phys. Rev. Lett. 88 027903
[18] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nature Phys. 3 41
Google Scholar
[19] Isberg, J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K, Twitchen D J 2013 Nat. Mater. 12 760
Google Scholar
[20] Zhu Z, Collaudin A, Fauqué B, Kang W, Behnia K 2012 Nature Phys. 8 89
Google Scholar
[21] Xiao D, Chang M C, Niu Q 2010 Reviews of Modern Physics 82 1959
Google Scholar
[22] Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489
Google Scholar
[23] Lee J, Mak K F, Shan J 2016 Nat. Nanotech. 11 421
Google Scholar
[24] Ubrig N, Jo S, Philippi M, Costanzo D, Berger H, Kuzmenko A B, Morpurgo A F 2017 Nano Lett. 17 5719
Google Scholar
[25] Barré E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H-S P, Heinz T F 2019 Nano Lett. 19 770
Google Scholar
[26] Hung T Y T, Camsari K Y, Zhang S, Upadhyaya P, Chen Z 2019 Sci. Adv. 5 6478
Google Scholar
[27] Wu Z, Zhou B T, Cai X, Cheung P, Liu G B, Huang M, Lin J, Han T, An L, Wang Y, Xu S, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611
Google Scholar
[28] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887
Google Scholar
[29] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494
Google Scholar
[30] Zeng H, Dai J, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490
Google Scholar
[31] Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M 2013 Nano Lett. 13 3870
Google Scholar
[32] Song Z, Li Z, Wang H, Bai X, Wang W, Du H, Liu S, Wang C, Han J, Yang Y 2017 Nano Lett. 17 2079
Google Scholar
[33] Wan Y, Xiao J, Li J, Fang X, Zhang K, Fu L, Li P, Song Z, Zhang H, Wang Y, Zhao M, Lu J, Tang N, Ran G, Zhang X, Ye Y, Dai L 2018 Adv. Mater. 30 1703888
Google Scholar
[34] Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B, Liu B L 2015 Phys. Status Solidi B 252 2349
Google Scholar
[35] Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J, Crooker S A 2015 Nature Phys. 11 830
Google Scholar
[36] Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J, Chang W H 2015 Nat. Commun. 6 8963
Google Scholar
[37] Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X, Crooker S A 2017 Phys. Rev. Lett. 119 137401
Google Scholar
[38] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[39] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147
Google Scholar
[40] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699
Google Scholar
[41] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[42] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
Google Scholar
[43] Zhou B T, Yuan N F Q, Jiang H L, Law K T 2016 Phys. Rev. B 93 180501
Google Scholar
[44] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416
Google Scholar
[45] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497
Google Scholar
[46] Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305
Google Scholar
[47] Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
Google Scholar
[48] Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J J, Wu X, Shi S F, Ge W, Dai L, Shen B 2017 Sci. Adv. 3 e1700162
Google Scholar
[49] Fan X, Chang C H, Zheng W T, Kuo J L, Singh D J 2015 J. Phys. Chem. C 119 10189
Google Scholar
[50] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448
Google Scholar
[51] Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nature Phys. 11 1027
Google Scholar
[52] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nature Phys. 11 1032
Google Scholar
[53] Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601
Google Scholar
[54] Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304
Google Scholar
[55] Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433
Google Scholar
[56] Kośmider K, González J W, Fernández-Rossier J 2013 Phys. Rev. B 88 245436
Google Scholar
[57] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D, Xu X 2013 Nature Phys. 9 149
Google Scholar
[58] Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotech. 9 825
Google Scholar
[59] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
Google Scholar
[60] Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C, Awschalom D D 2005 Nature Phys. 1 31
Google Scholar
[61] Gong C, Colombo L, Wallace R M, Cho K 2014 Nano Lett. 14 1714
Google Scholar
[62] Bampoulis P, van Bremen R, Yao Q, Poelsema B, Zandvliet H J W, Sotthewes K 2017 ACS Appl. Mater. Interfaces 9 19278
Google Scholar
[63] Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588
Google Scholar
[64] Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nature Phys. 9 563
Google Scholar
[65] Lyanda-Geller Y B, Li S, Andreev A V 2015 Phys. Rev. B 92 241406
Google Scholar
[66] Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C, Yu T 2015 Nat. Commun. 6 7636
Google Scholar
[67] Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y, Cui Y 2014 Nat. Nanotechnol. 9 851
Google Scholar
[68] Guan H, Tang N, Xu X, Shang L, Huang W, Fu L, Fang X, Yu J, Zhang C, Zhang X, Dai L, Chen Y, Ge W, Shen B 2017 Phys. Rev. B 96 241304
Google Scholar
[69] Suzuki R, Sakano M, Zhang Y, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R, Iwasa Y 2014 Nat. Nanotech. 9 611
Google Scholar
[70] Guan H, Tang N, Huang H, Zhang X, Su M, Liu X, Liao L, Ge W, Shen B 2019 ACS Nano 13 9325
Google Scholar
[71] Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792
Google Scholar
[72] Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804
Google Scholar
[73] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Phys. 11 141
Google Scholar
[74] Qi J, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403
Google Scholar
[75] Xu L, Yang M, Shen L, Zhou J, Zhu T, Feng Y P 2018 Phys. Rev. B 97 041405
Google Scholar
[76] Zollner K, Junior P E F, Fabian J 2020 Phys. Rev. B 101 085112
Google Scholar
[77] Mao X, Liu Z, Li J, Li C, Teng S, Liu Y, Xu X 2020 Journal of Magnetism and Magnetic Materials 512 167061
Google Scholar
[78] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H 2017 Nat. Nanotech. 12 757
Google Scholar
[79] Zhang Q Y, Yang S Y A, Mi W B, Cheng Y C, Schwingenschlogl U 2016 Adv. Mater. 28 959
Google Scholar
[80] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163
Google Scholar
[81] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotech. 13 544
Google Scholar
[82] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P T, Sheng Z G, Qu Z, Song W H, Zhu X B, Sun Y P 2017 Phys. Rev. B 95 245212
Google Scholar
[83] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94
Google Scholar
[84] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M, Xu X 2018 Nano Lett. 18 3823
Google Scholar
[85] Ke C, Wu Y, Guo G Y, Lin W, Wu Z, Zhou C, Kang J 2018 Phys. Rev. Appl. 9 044029
Google Scholar
[86] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401
Google Scholar
[87] Zollner K, Junior P E F, Fabian J 2019 Phys. Rev. B 100 085128
Google Scholar
[88] Peng B, Li Q, Liang X, Song P, Li J, He K, Fu D, Li Y, Shen C, Wang H, Wang C, Liu T, Zhang L, Lu H, Wang X, Zhao J, Xie J, Wu M, Bi L, Deng L, Loh K P 2017 ACS Nano 11 12257
Google Scholar
[89] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X, Kang J 2019 Phys. Rev. B 100 195435
Google Scholar
[90] Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201
Google Scholar
[91] Yin M Y, Wang X C, Mi W B, Yang B H 2015 Computational Materials Science 99 326
Google Scholar
[92] Zhou J, Lin J, Sims H, Jiang C, Cong C, Brehm J A, Zhang Z, Niu L, Chen Y, Zhou Y, Wang Y, Liu F, Zhu C, Yu T, Suenaga K, Mishra R, Pantelides S T, Zhu Z G, Gao W, Liu Z, Zhou W 2020 Adv. Mater. 32 1906536
Google Scholar
[93] Li Q, Zhao X, Deng L, Shi Z, Liu S, Wei Q, Zhang L, Cheng Y, Zhang L, Lu H, Gao W, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q, Loh K P, Peng B 2020 ACS Nano 14 4636
Google Scholar
[94] Liu J, Hou W J, Cheng C, Fu H X, Sun J T, Meng S 2017 J. Phys.: Condens. Matter 29 255501
Google Scholar
[95] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P, Peng B 2020 Nano Lett. 20 2129
Google Scholar
[96] Wu G Y, Lue N Y, Chen Y C 2013 Phys. Rev. B 88 125422
Google Scholar
[97] Rycerz A, Tworzydło J, Beenakker C W J 2007 Nature Phys. 3 172
Google Scholar
[98] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[99] Lee M K, Lue N Y, Wen C K, Wu G Y 2012 Phys. Rev. B 86 165411
Google Scholar
[100] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
Google Scholar
[101] Wu G Y, Lue N Y, Chang L 2011 Phys. Rev. B 84 195463
Google Scholar
[102] Wu G Y, Lue N Y 2012 Phys. Rev. B 86 045456
Google Scholar
[103] Yu H, Wu Y, Liu G B, Xu X, Yao W 2014 Phys. Rev. Lett. 113 156603
Google Scholar
[104] Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725
Google Scholar
[105] Yang W, Shang J, Wang J, Shen X, Cao B, Peimyoo N, Zou C, Chen Y, Wang Y, Cong C, Huang W, Yu T 2016 Nano Lett. 16 1560
Google Scholar
[106] Scrace T, Tsai Y, Barman B, Schweidenback L, Petrou A, Kioseoglou G, Ozfidan I, Korkusinski M, Hawrylak P 2015 Nat. Nanotech. 10 603
Google Scholar
[107] Onga M, Zhang Y, Suzuki R, Iwasa Y 2016 Appl. Phys. Lett. 108 073107
Google Scholar
[108] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Nanotech. 8 634
Google Scholar
[109] Ye Z, Sun D, Heinz T F 2017 Nat. Phys. 13 26
Google Scholar
[110] Wang G, Marie X, Liu B, Amand T, Robert C, Cadiz F, Renucci P, Urbaszek B 2016 Phys. Rev. Lett. 117 187401
Google Scholar
[111] Yu H, Liu G B, Gong P, Xu X, Yao W 2014 Nat. Commun. 5 3876
Google Scholar
[112] Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518
Google Scholar
[113] Rivera P, Seyler K L, Yu H, Schaibley J R, Yan J, Mandrus D G, Yao W, Xu X 2016 Science 351 688
Google Scholar
[114] Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X 2018 Nat. Nanotechnol. 13 1004
Google Scholar
[115] Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K, Taniguchi T, Kis A 2019 Nat. Nanotech. 14 1104
Google Scholar
[116] Gong S H, Komen I, Alpeggiani F, Kuipers L 2020 Nano Lett. 20 4410
Google Scholar
[117] Li L, Shao L, Liu X, Gao A, Wang H, Zheng B, Hou G, Shehzad K, Yu L, Miao F, Shi Y, Xu Y, Wang X 2020 Nat. Nanotech. 15 743
Google Scholar
[118] Fang Y, Verre R, Shao L, Nordlander P, Käll M 2016 Nano Lett. 16 5183
Google Scholar
[119] Tao L L, Tsymbal E Y 2019 Phys. Rev. B 100 161110
Google Scholar
[120] Tao L L, Naeemi A, Tsymbal E Y 2020 Phys. Rev. Appl. 13 054043
Google Scholar
[121] Avsar A, Unuchek D, Liu J, Sanchez O L, Watanabe K, Taniguchi T, Özyilmaz B, Kis A 2017 ACS Nano 11 11678
Google Scholar
[122] Luo Y K, Xu J, Zhu T, Wu G, McCormick E J, Zhan W, Neupane M R, Kawakami R K 2017 Nano Lett. 17 3877
Google Scholar
[123] Ominato Y, Fujimoto J, Matsuo M 2020 Phys. Rev. Lett. 124 166803
Google Scholar
[124] Yu Z M, Guan S, Sheng X L, Gao W, Yang S A 2020 Phys. Rev. Lett. 124 037701
Google Scholar
-
图 4 单层MoS2在83 K下的圆偏振极化PL谱和PL谱的圆偏振极化程度. 红色和蓝色曲线分别对应于发光光谱中
${\sigma ^ + }$ 和${\sigma ^ - }$ 极化强度, 黑色曲线是净极化的大小[28]Fig. 4. Circularly polarized micro-PL of monolayer MoS2 at 83 K, along with the degree of circular polarization of the PL spectra. The red and blue curves correspond to the intensities of
${\sigma ^ + }$ and${\sigma ^ - }$ polarizations, respectively, in the luminescence spectrum. The black curve is the net degree of polarization[28].图 5 (a)体MoS2, (b)四层MoS2, (c)双层MoS2和(d)单层MoS2的能带结构. 实心箭头表示最低能量跃迁. 体和多层MoS2具有间接带隙特性. 对于单层MoS2, 它变为直接带隙半导体[42]
Fig. 5. Calculated band structures of (a) bulk MoS2, (b) quadrilayer MoS2, (c) bilayer MoS2, and (d) monolayer MoS2. The solid arrows indicate the lowest energy transitions. Bulk MoS2 is characterized by an indirect bandgap. For monolayer MoS2, it becomes a direct bandgap semiconductor[42].
-
[1] Urbaszek B, Marie X 2015 Nature Phys. 11 94
Google Scholar
[2] Amet F, Finkelstein G 2015 Nature Phys. 11 989
Google Scholar
[3] Li X, Moody G 2017 Nature Phys. 13 9
Google Scholar
[4] Yu H, Yao W 2017 Nat. Mater. 16 876
Google Scholar
[5] Zhang F 2018 Nature Phys. 14 111
Google Scholar
[6] Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809
Google Scholar
[7] Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406
Google Scholar
[8] Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
Google Scholar
[9] Xie L, Cui X D 2016 P. Natl. Acad. Sci. 113 3746
Google Scholar
[10] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotech. 11 598
Google Scholar
[11] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D, Rothschild M 2018 Small 14 1801483
Google Scholar
[12] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055
Google Scholar
[13] Sham L J, Allen S J Jr, Kamgar A, Tsui D C 1978 Phys. Rev. Lett. 40 472
Google Scholar
[14] Ohkawa F J, Uemura Y 1977 J. Phys. Soc. Jpn. 43 907
Google Scholar
[15] Shkolnikov Y P, De Poortere E P, Tutuc E, Shayegan M 2002 Phys. Rev. Lett. 89 226805
Google Scholar
[16] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404
Google Scholar
[17] Koiller B, Hu X, Das Sarma S 2002 Phys. Rev. Lett. 88 027903
[18] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nature Phys. 3 41
Google Scholar
[19] Isberg, J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K, Twitchen D J 2013 Nat. Mater. 12 760
Google Scholar
[20] Zhu Z, Collaudin A, Fauqué B, Kang W, Behnia K 2012 Nature Phys. 8 89
Google Scholar
[21] Xiao D, Chang M C, Niu Q 2010 Reviews of Modern Physics 82 1959
Google Scholar
[22] Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489
Google Scholar
[23] Lee J, Mak K F, Shan J 2016 Nat. Nanotech. 11 421
Google Scholar
[24] Ubrig N, Jo S, Philippi M, Costanzo D, Berger H, Kuzmenko A B, Morpurgo A F 2017 Nano Lett. 17 5719
Google Scholar
[25] Barré E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H-S P, Heinz T F 2019 Nano Lett. 19 770
Google Scholar
[26] Hung T Y T, Camsari K Y, Zhang S, Upadhyaya P, Chen Z 2019 Sci. Adv. 5 6478
Google Scholar
[27] Wu Z, Zhou B T, Cai X, Cheung P, Liu G B, Huang M, Lin J, Han T, An L, Wang Y, Xu S, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611
Google Scholar
[28] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887
Google Scholar
[29] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494
Google Scholar
[30] Zeng H, Dai J, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490
Google Scholar
[31] Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M 2013 Nano Lett. 13 3870
Google Scholar
[32] Song Z, Li Z, Wang H, Bai X, Wang W, Du H, Liu S, Wang C, Han J, Yang Y 2017 Nano Lett. 17 2079
Google Scholar
[33] Wan Y, Xiao J, Li J, Fang X, Zhang K, Fu L, Li P, Song Z, Zhang H, Wang Y, Zhao M, Lu J, Tang N, Ran G, Zhang X, Ye Y, Dai L 2018 Adv. Mater. 30 1703888
Google Scholar
[34] Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B, Liu B L 2015 Phys. Status Solidi B 252 2349
Google Scholar
[35] Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J, Crooker S A 2015 Nature Phys. 11 830
Google Scholar
[36] Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J, Chang W H 2015 Nat. Commun. 6 8963
Google Scholar
[37] Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X, Crooker S A 2017 Phys. Rev. Lett. 119 137401
Google Scholar
[38] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[39] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147
Google Scholar
[40] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699
Google Scholar
[41] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[42] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
Google Scholar
[43] Zhou B T, Yuan N F Q, Jiang H L, Law K T 2016 Phys. Rev. B 93 180501
Google Scholar
[44] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416
Google Scholar
[45] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497
Google Scholar
[46] Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305
Google Scholar
[47] Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
Google Scholar
[48] Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J J, Wu X, Shi S F, Ge W, Dai L, Shen B 2017 Sci. Adv. 3 e1700162
Google Scholar
[49] Fan X, Chang C H, Zheng W T, Kuo J L, Singh D J 2015 J. Phys. Chem. C 119 10189
Google Scholar
[50] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448
Google Scholar
[51] Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nature Phys. 11 1027
Google Scholar
[52] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nature Phys. 11 1032
Google Scholar
[53] Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601
Google Scholar
[54] Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304
Google Scholar
[55] Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433
Google Scholar
[56] Kośmider K, González J W, Fernández-Rossier J 2013 Phys. Rev. B 88 245436
Google Scholar
[57] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D, Xu X 2013 Nature Phys. 9 149
Google Scholar
[58] Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotech. 9 825
Google Scholar
[59] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
Google Scholar
[60] Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C, Awschalom D D 2005 Nature Phys. 1 31
Google Scholar
[61] Gong C, Colombo L, Wallace R M, Cho K 2014 Nano Lett. 14 1714
Google Scholar
[62] Bampoulis P, van Bremen R, Yao Q, Poelsema B, Zandvliet H J W, Sotthewes K 2017 ACS Appl. Mater. Interfaces 9 19278
Google Scholar
[63] Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588
Google Scholar
[64] Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nature Phys. 9 563
Google Scholar
[65] Lyanda-Geller Y B, Li S, Andreev A V 2015 Phys. Rev. B 92 241406
Google Scholar
[66] Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C, Yu T 2015 Nat. Commun. 6 7636
Google Scholar
[67] Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y, Cui Y 2014 Nat. Nanotechnol. 9 851
Google Scholar
[68] Guan H, Tang N, Xu X, Shang L, Huang W, Fu L, Fang X, Yu J, Zhang C, Zhang X, Dai L, Chen Y, Ge W, Shen B 2017 Phys. Rev. B 96 241304
Google Scholar
[69] Suzuki R, Sakano M, Zhang Y, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R, Iwasa Y 2014 Nat. Nanotech. 9 611
Google Scholar
[70] Guan H, Tang N, Huang H, Zhang X, Su M, Liu X, Liao L, Ge W, Shen B 2019 ACS Nano 13 9325
Google Scholar
[71] Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792
Google Scholar
[72] Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804
Google Scholar
[73] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Phys. 11 141
Google Scholar
[74] Qi J, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403
Google Scholar
[75] Xu L, Yang M, Shen L, Zhou J, Zhu T, Feng Y P 2018 Phys. Rev. B 97 041405
Google Scholar
[76] Zollner K, Junior P E F, Fabian J 2020 Phys. Rev. B 101 085112
Google Scholar
[77] Mao X, Liu Z, Li J, Li C, Teng S, Liu Y, Xu X 2020 Journal of Magnetism and Magnetic Materials 512 167061
Google Scholar
[78] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H 2017 Nat. Nanotech. 12 757
Google Scholar
[79] Zhang Q Y, Yang S Y A, Mi W B, Cheng Y C, Schwingenschlogl U 2016 Adv. Mater. 28 959
Google Scholar
[80] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163
Google Scholar
[81] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotech. 13 544
Google Scholar
[82] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P T, Sheng Z G, Qu Z, Song W H, Zhu X B, Sun Y P 2017 Phys. Rev. B 95 245212
Google Scholar
[83] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94
Google Scholar
[84] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M, Xu X 2018 Nano Lett. 18 3823
Google Scholar
[85] Ke C, Wu Y, Guo G Y, Lin W, Wu Z, Zhou C, Kang J 2018 Phys. Rev. Appl. 9 044029
Google Scholar
[86] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401
Google Scholar
[87] Zollner K, Junior P E F, Fabian J 2019 Phys. Rev. B 100 085128
Google Scholar
[88] Peng B, Li Q, Liang X, Song P, Li J, He K, Fu D, Li Y, Shen C, Wang H, Wang C, Liu T, Zhang L, Lu H, Wang X, Zhao J, Xie J, Wu M, Bi L, Deng L, Loh K P 2017 ACS Nano 11 12257
Google Scholar
[89] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X, Kang J 2019 Phys. Rev. B 100 195435
Google Scholar
[90] Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201
Google Scholar
[91] Yin M Y, Wang X C, Mi W B, Yang B H 2015 Computational Materials Science 99 326
Google Scholar
[92] Zhou J, Lin J, Sims H, Jiang C, Cong C, Brehm J A, Zhang Z, Niu L, Chen Y, Zhou Y, Wang Y, Liu F, Zhu C, Yu T, Suenaga K, Mishra R, Pantelides S T, Zhu Z G, Gao W, Liu Z, Zhou W 2020 Adv. Mater. 32 1906536
Google Scholar
[93] Li Q, Zhao X, Deng L, Shi Z, Liu S, Wei Q, Zhang L, Cheng Y, Zhang L, Lu H, Gao W, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q, Loh K P, Peng B 2020 ACS Nano 14 4636
Google Scholar
[94] Liu J, Hou W J, Cheng C, Fu H X, Sun J T, Meng S 2017 J. Phys.: Condens. Matter 29 255501
Google Scholar
[95] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P, Peng B 2020 Nano Lett. 20 2129
Google Scholar
[96] Wu G Y, Lue N Y, Chen Y C 2013 Phys. Rev. B 88 125422
Google Scholar
[97] Rycerz A, Tworzydło J, Beenakker C W J 2007 Nature Phys. 3 172
Google Scholar
[98] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[99] Lee M K, Lue N Y, Wen C K, Wu G Y 2012 Phys. Rev. B 86 165411
Google Scholar
[100] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
Google Scholar
[101] Wu G Y, Lue N Y, Chang L 2011 Phys. Rev. B 84 195463
Google Scholar
[102] Wu G Y, Lue N Y 2012 Phys. Rev. B 86 045456
Google Scholar
[103] Yu H, Wu Y, Liu G B, Xu X, Yao W 2014 Phys. Rev. Lett. 113 156603
Google Scholar
[104] Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725
Google Scholar
[105] Yang W, Shang J, Wang J, Shen X, Cao B, Peimyoo N, Zou C, Chen Y, Wang Y, Cong C, Huang W, Yu T 2016 Nano Lett. 16 1560
Google Scholar
[106] Scrace T, Tsai Y, Barman B, Schweidenback L, Petrou A, Kioseoglou G, Ozfidan I, Korkusinski M, Hawrylak P 2015 Nat. Nanotech. 10 603
Google Scholar
[107] Onga M, Zhang Y, Suzuki R, Iwasa Y 2016 Appl. Phys. Lett. 108 073107
Google Scholar
[108] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Nanotech. 8 634
Google Scholar
[109] Ye Z, Sun D, Heinz T F 2017 Nat. Phys. 13 26
Google Scholar
[110] Wang G, Marie X, Liu B, Amand T, Robert C, Cadiz F, Renucci P, Urbaszek B 2016 Phys. Rev. Lett. 117 187401
Google Scholar
[111] Yu H, Liu G B, Gong P, Xu X, Yao W 2014 Nat. Commun. 5 3876
Google Scholar
[112] Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518
Google Scholar
[113] Rivera P, Seyler K L, Yu H, Schaibley J R, Yan J, Mandrus D G, Yao W, Xu X 2016 Science 351 688
Google Scholar
[114] Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X 2018 Nat. Nanotechnol. 13 1004
Google Scholar
[115] Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K, Taniguchi T, Kis A 2019 Nat. Nanotech. 14 1104
Google Scholar
[116] Gong S H, Komen I, Alpeggiani F, Kuipers L 2020 Nano Lett. 20 4410
Google Scholar
[117] Li L, Shao L, Liu X, Gao A, Wang H, Zheng B, Hou G, Shehzad K, Yu L, Miao F, Shi Y, Xu Y, Wang X 2020 Nat. Nanotech. 15 743
Google Scholar
[118] Fang Y, Verre R, Shao L, Nordlander P, Käll M 2016 Nano Lett. 16 5183
Google Scholar
[119] Tao L L, Tsymbal E Y 2019 Phys. Rev. B 100 161110
Google Scholar
[120] Tao L L, Naeemi A, Tsymbal E Y 2020 Phys. Rev. Appl. 13 054043
Google Scholar
[121] Avsar A, Unuchek D, Liu J, Sanchez O L, Watanabe K, Taniguchi T, Özyilmaz B, Kis A 2017 ACS Nano 11 11678
Google Scholar
[122] Luo Y K, Xu J, Zhu T, Wu G, McCormick E J, Zhan W, Neupane M R, Kawakami R K 2017 Nano Lett. 17 3877
Google Scholar
[123] Ominato Y, Fujimoto J, Matsuo M 2020 Phys. Rev. Lett. 124 166803
Google Scholar
[124] Yu Z M, Guan S, Sheng X L, Gao W, Yang S A 2020 Phys. Rev. Lett. 124 037701
Google Scholar
计量
- 文章访问数: 17236
- PDF下载量: 1641
- 被引次数: 0