搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFETR参数下$\boldsymbol \alpha$粒子慢化过程的数值模拟

吴相凤 王丰 林展宏 陈罗玉 于召客 吴凯邦 王正汹

引用本文:
Citation:

CFETR参数下$\boldsymbol \alpha$粒子慢化过程的数值模拟

吴相凤, 王丰, 林展宏, 陈罗玉, 于召客, 吴凯邦, 王正汹

Numerical simulation of $\boldsymbol \alpha$ particle slowing-down process under CFETR scenario

Wu Xiang-Feng, Wang Feng, Lin Zhan-Hong, Chen Luo-Yu, Yu Zhao-Ke, Wu Kai-Bang, Wang Zheng-Xiong
PDF
HTML
导出引用
  • 氘氚聚变产生的高能量α粒子是维持未来托卡马克反应堆等离子体高温的主要加热源, 良好的α粒子约束对于维持稳态燃烧等离子体至关重要. 在持续发生聚变反应的系统中, α粒子远离热平衡, 呈现非麦克斯韦分布. 如果忽略轨道效应, 基于局域库仑碰撞的假设可以得到α粒子的经典慢化分布, 然而由于α粒子存在较大的漂移轨道宽度, 空间输运不容忽视, 为得到更为准确的α粒子分布函数, 需要开展相关的数值计算. 本文使用模拟程序PTC (particle tracer code)在中国聚变工程试验堆(CFETR)不同的放电模式下, 采用粒子轨道跟踪和蒙特卡罗碰撞方法, 对α粒子慢化过程进行了数值模拟, 获得了更为真实的α粒子分布函数, 并将其与经典慢化分布进行了对比. 结果显示分布函数在中等能量附近和经典慢化分布存在较大差异. 进一步的分析表明, 这是由于中等能量下α粒子的较强的径向输运引起的. 本文的研究结果对准确评估α粒子加热背景等离子体的能力具有重要参考价值.
    The high-energy α particles produced by deuterium-tritium fusion are the primary heating source for maintaining high temperatures in future tokamak plasma. Effective confinement of α particles is crucial for sustaining steady-state burning plasma. The initial energy of α particles is $ 3.5 {\text{ MeV}} $. According to theoretical calculations, it takes approximately 1 second to slow down α particles through Coulomb collisions to an energy range similar to the energy range of the background plasma. In the slowing-down process, some α particles may be lost owing to various transport processes. One significant research problem is how to utilize α particles to effectively heat fuel ions so as to sustain fusion reactions in a reactor. Assuming local Coulomb collisions and neglecting orbital effects, a classical slowing-down distribution for α particles can be derived. However, considering the substantial drift orbit width of α particles and the importance of spatial transport, numerical calculations are required to obtain more accurate α particle distribution function. In this study, the particle tracer code (PTC) is used to numerically simulate the slowing-down process of α particles under different scenarios in the Chinese Fusion Engineering Test Reactor (CFETR). By combining particle orbit tracing method with Monte Carlo collision method, a more realistic α particle distribution function can be obtained and compared with the classical slowing-down distribution. The results show significant differences between this distribution function and the classical slowing-down distribution, particularly in the moderate energy range. Further analysis indicates that these disparities are primarily caused by the strong radial transport of α particles at these energy levels. The research findings hold profound implications for the precise evaluating of ability of α particles to heat the background plasma. Understanding and characterizing the behavior of α particles in the slowing-down process and their interaction with the plasma is critical for designing and optimizing future fusion reactors. By attaining a deeper comprehension of the spatial transport and distribution of α particles, it becomes possible to enhance the efficiency of fuel ion heating and sustain fusion reactions more effectively. This study establishes a foundation for subsequent investigations and evaluation of α particles as a highly efficient heating source for fusion plasmas.
      通信作者: 王丰, fengwang@dlut.edu.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2022YFE03090000)、国家自然科学基(批准号: 11975068)和大连理工大学基本科研业务费(批准号: DUT22LK18)资助的课题.
      Corresponding author: Wang Feng, fengwang@dlut.edu.cn
    • Funds: Project supported by the National Special Project for Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2022YFE03090000), the National Natural Science Foundation of China (Grant No. 11975068), and the Fundamental Research Funds for the Central Universities of Dalian University of Technology, China (Grant No. DUT22LK18).
    [1]

    Jhang H, Chang C S 1996 Phys. Plasmas 3 3732Google Scholar

    [2]

    赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 69 035203Google Scholar

    Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar

    [3]

    Wan Y X, Li J G, Liu Y, Wang X L, Chan V, Chen C A, Duan X R, Fu P, Gao X, Feng K M 2017 Nucl. Fusion 57 102009Google Scholar

    [4]

    李新霞, 李国壮, 刘洪波 2020 69 145201Google Scholar

    Li X X, Li G Z, Liu H B 2020 Acta Phys. Sin. 69 145201Google Scholar

    [5]

    Chen J L, Jian X, Chan V S, Li Z Y, Deng Z, Li G Q, Guo W F, Shi N, Chen X 2017 Plasma Phys. Controlled Fusion 59 75005Google Scholar

    [6]

    郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETR TEAM 2021 70 115201Google Scholar

    Hao B L, Chen W, Li G Q, Wang X J, Wang Z L, Wu B, Zang Q, Jie Y X, Lin X D, Gao X, CFETR T 2021 Acta Phys. Sin. 70 115201Google Scholar

    [7]

    McKee G R, Fonck R J, Stratton B C, Budny R V, Chang Z, Ramsey A T 1997 Nucl. Fusion 37 501Google Scholar

    [8]

    Kolesnichenko Y I 1980 Nucl. Fusion 20 727Google Scholar

    [9]

    Gorelenkov N N, Budny R V, Duong H H, Fisher R K, Medley S S, Petrov M P, Redi M H 1997 Nucl. Fusion 37 1053Google Scholar

    [10]

    石黎铭, 吴雪科, 万迪, 李会东, 樊群超, 王中天, 冯灏, 王占辉, 马杰 2019 68 105201Google Scholar

    Shi L M, Wu X K, Wan D, Li H D, Fan Q C, Wang Z T, Feng H, Wang Z H, Ma J 2019 Acta Phys. Sin. 68 105201Google Scholar

    [11]

    He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25 12704Google Scholar

    [12]

    Jhang H 2021 Phys. Plasmas 28 94501Google Scholar

    [13]

    Liberman M A, Velikovich A L 1984 J. Plasma Phys. 31 369Google Scholar

    [14]

    Hsu C T, Catto P J, Sigmar D J 1990 Phys. Fluids B 2 280Google Scholar

    [15]

    陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅 2019 68 215201Google Scholar

    Chen Z, Zhao Z J, Lü Z L, Li J H, Pan D M 2019 Acta Phys. Sin. 68 215201Google Scholar

    [16]

    Moseev D, Salewski M 2019 Phys. Plasmas 26 20901Google Scholar

    [17]

    Jhang H 1998 Phys. Plasmas 5 4498Google Scholar

    [18]

    Dai Y Z, Cao J J, Xiang D, Yang J H 2023 Phys. Plasmas 30 42501Google Scholar

    [19]

    Wilkie G J, Abel I G, Highcock E G, Dorland W 2015 J. Plasma Phys. 81 905810306Google Scholar

    [20]

    Angioni C, Peeters A G 2008 Phys. Plasmas 15 52307Google Scholar

    [21]

    Wilkie G J, Abel I G, Landreman M, Dorland W 2016 Phys. Plasmas 23 60703Google Scholar

    [22]

    Hauff T, Pueschel M J, Dannert T, Jenko F 2009 Phys. Rev. Lett. 102 75004Google Scholar

    [23]

    Sigmar D, Gormley R, Kamelander G 1993 Nucl. Fusion 33 677Google Scholar

    [24]

    Pueschel M J, Jenko F, Schneller M, Hauff T, Günter S, Tardini G 2012 Nucl. Fusion 52 103018Google Scholar

    [25]

    Wang F, Zhao R, Wang Z X, Zhang Y, Lin Z H, Liu S J 2021 Chin. Phys. Lett. 38 55201Google Scholar

    [26]

    Gaffey Jr J D 1976 J. Plasma Phys. 16 171

    [27]

    Wilkie G J 2018 J. Plasma Phys. 84 745840601Google Scholar

    [28]

    Team J 1999 Nucl. Fusion 39 1619Google Scholar

  • 图 1  电子温度分别为27.78, 14.4和6.7 keV, 对应电子密度分别为1.14×1020, 9.34×1019和7.47×1019 m–3参数下得到的经典能量慢化分布$ {f_1}, {\text{ }}{f_2}, {\text{ }}{f_3} $

    Fig. 1.  Classical energy slowing-down distributions f1, f2 and f3 obtained for the electron temperatures of 27.78, 14.4 and 6.7 keV, and their corresponding electron densities of 1.14×1020, 9.34×1019 and 7.47×1019 m–3.

    图 2  CFETR中的背景等离子体参数 (a) 稳态运行模式下的密度、温度和安全因子剖面; (b) 混杂运行模式下的密度、温度和安全因子剖面

    Fig. 2.  Background plasma profiles in CFETR: (a) Density, temperature, and safety factor profiles in steady-state scenario; (b) density, temperature and safety factor profiles in hybrid scenario.

    图 3  CFETR稳态运行模式(实线)和混杂运行模式(虚线)下的各个物理量随时间的变化 (a) α粒子数量; (b) α粒子损失率; (c) α粒子对背景等离子体的加热功率; (d) α粒子平均能量

    Fig. 3.  Time evolution of various physical quantities in CFETR steady-state scenario (solid lines) and hybrid scenario (dashed lines): (a) Number of α particles; (b) loss rate of α particles; (c) heating power of α particles to the background plasma; (d) average energy of α particles.

    图 4  $ \psi $空间的加热功率密度

    Fig. 4.  Heating power density in the $ \psi $ space.

    图 5  稳态时α粒子的密度分布 (a) CFETR稳态运行模式; (b) CFETR混杂运行模式

    Fig. 5.  The α particle density in steady-state: (a) CFETR steady-state scenario; (b) CFETR Hybrid scenario.

    图 6  α粒子分布函数 (a) 能量空间; (b) 归一化极向磁通空间

    Fig. 6.  The α particle distribution function: (a) Energy space; (b) normalized poloidal magnetic flux space.

    图 7  PTC程序得到的能量慢化分布与理论能量慢化分布的对比 (a) 稳态运行模式下$ {\psi _{\text{a}}} = 0.1—0.2 $$ {\psi _{\text{b}}} = 0.5\text{—}0.6 $; (b) 混杂运行模式下$ {\psi _{\text{c}}} = 0—0.1 $$ {\psi _{\text{d}}} = 0.4—0.5 $

    Fig. 7.  Comparison between the energy slowing-down distribution obtained by PTC code and the classical energy slowing-down distribution: (a) In steady-state scenario at $ {\psi _{\text{a}}} = 0.1$–0.2 and $ {\psi _{\text{b}}} = 0.5$–0.6 ; (b) in hybrid scenario at $ {\psi _{\text{c}}} = 0 $–0.1 and $ {\psi _{\text{d}}} = $$ 0.4$–0.5.

    图 8  稳态运行模式下的慢化分布函数对比 (a) $ {\psi _{\text{a}}} = 0.1—0.2 $$ {\psi _{\rm{b}}} = 0.5—0.6 $下经典慢化分布与修正慢化分布; (b) $ {\psi _{\text{a}}} = $$ 0.1—0.2 $下修正慢化分布、经典慢化分布与PTC模拟的慢化分布

    Fig. 8.  Comparison of slowing-down distribution functions in steady-state scenario: (a) Modified slowing-down distribution and classical slowing-down distribution at $ {\psi _{\text{a}}} = 0.1-0.2 $ and $ {\psi _{\text{b}}} = 0.5-0.6 $; (b) modified slowing-down distribution, classical slowing-down distribution, and PTC slowing-down distribution at $ {\psi _{\text{a}}} = 0.1-0.2 $.

    Baidu
  • [1]

    Jhang H, Chang C S 1996 Phys. Plasmas 3 3732Google Scholar

    [2]

    赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 69 035203Google Scholar

    Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar

    [3]

    Wan Y X, Li J G, Liu Y, Wang X L, Chan V, Chen C A, Duan X R, Fu P, Gao X, Feng K M 2017 Nucl. Fusion 57 102009Google Scholar

    [4]

    李新霞, 李国壮, 刘洪波 2020 69 145201Google Scholar

    Li X X, Li G Z, Liu H B 2020 Acta Phys. Sin. 69 145201Google Scholar

    [5]

    Chen J L, Jian X, Chan V S, Li Z Y, Deng Z, Li G Q, Guo W F, Shi N, Chen X 2017 Plasma Phys. Controlled Fusion 59 75005Google Scholar

    [6]

    郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETR TEAM 2021 70 115201Google Scholar

    Hao B L, Chen W, Li G Q, Wang X J, Wang Z L, Wu B, Zang Q, Jie Y X, Lin X D, Gao X, CFETR T 2021 Acta Phys. Sin. 70 115201Google Scholar

    [7]

    McKee G R, Fonck R J, Stratton B C, Budny R V, Chang Z, Ramsey A T 1997 Nucl. Fusion 37 501Google Scholar

    [8]

    Kolesnichenko Y I 1980 Nucl. Fusion 20 727Google Scholar

    [9]

    Gorelenkov N N, Budny R V, Duong H H, Fisher R K, Medley S S, Petrov M P, Redi M H 1997 Nucl. Fusion 37 1053Google Scholar

    [10]

    石黎铭, 吴雪科, 万迪, 李会东, 樊群超, 王中天, 冯灏, 王占辉, 马杰 2019 68 105201Google Scholar

    Shi L M, Wu X K, Wan D, Li H D, Fan Q C, Wang Z T, Feng H, Wang Z H, Ma J 2019 Acta Phys. Sin. 68 105201Google Scholar

    [11]

    He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25 12704Google Scholar

    [12]

    Jhang H 2021 Phys. Plasmas 28 94501Google Scholar

    [13]

    Liberman M A, Velikovich A L 1984 J. Plasma Phys. 31 369Google Scholar

    [14]

    Hsu C T, Catto P J, Sigmar D J 1990 Phys. Fluids B 2 280Google Scholar

    [15]

    陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅 2019 68 215201Google Scholar

    Chen Z, Zhao Z J, Lü Z L, Li J H, Pan D M 2019 Acta Phys. Sin. 68 215201Google Scholar

    [16]

    Moseev D, Salewski M 2019 Phys. Plasmas 26 20901Google Scholar

    [17]

    Jhang H 1998 Phys. Plasmas 5 4498Google Scholar

    [18]

    Dai Y Z, Cao J J, Xiang D, Yang J H 2023 Phys. Plasmas 30 42501Google Scholar

    [19]

    Wilkie G J, Abel I G, Highcock E G, Dorland W 2015 J. Plasma Phys. 81 905810306Google Scholar

    [20]

    Angioni C, Peeters A G 2008 Phys. Plasmas 15 52307Google Scholar

    [21]

    Wilkie G J, Abel I G, Landreman M, Dorland W 2016 Phys. Plasmas 23 60703Google Scholar

    [22]

    Hauff T, Pueschel M J, Dannert T, Jenko F 2009 Phys. Rev. Lett. 102 75004Google Scholar

    [23]

    Sigmar D, Gormley R, Kamelander G 1993 Nucl. Fusion 33 677Google Scholar

    [24]

    Pueschel M J, Jenko F, Schneller M, Hauff T, Günter S, Tardini G 2012 Nucl. Fusion 52 103018Google Scholar

    [25]

    Wang F, Zhao R, Wang Z X, Zhang Y, Lin Z H, Liu S J 2021 Chin. Phys. Lett. 38 55201Google Scholar

    [26]

    Gaffey Jr J D 1976 J. Plasma Phys. 16 171

    [27]

    Wilkie G J 2018 J. Plasma Phys. 84 745840601Google Scholar

    [28]

    Team J 1999 Nucl. Fusion 39 1619Google Scholar

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [3] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [4] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [6] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟.  , 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [7] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [8] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏. 超声分子束注入密度和宽度对托克马克装置加料深度的影响.  , 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [9] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [10] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [13] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [14] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [15] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [16] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [17] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究.  , 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [18] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究.  , 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [19] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析.  , 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  2632
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-29
  • 修回日期:  2023-06-08
  • 上网日期:  2023-06-26
  • 刊出日期:  2023-11-05

/

返回文章
返回
Baidu
map