搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性爆沸诱导的液滴自驱动

曹春蕾 徐进良 叶文力

引用本文:
Citation:

周期性爆沸诱导的液滴自驱动

曹春蕾, 徐进良, 叶文力

Self-propulsion droplet induced via periodic explosive boiling

Cao Chun-Lei, Xu Jin-Liang, Ye Wen-Li
PDF
HTML
导出引用
  • 将液滴沉积在高于Leidenfrost温度的表面上, 液滴将悬浮在自身的蒸汽垫上, 这使液滴具有惊人的移动性, 通常通过构造不对称的微纳结构表面对液滴下方的蒸汽流进行校正, 实现液滴自驱动. 但液滴运动方向和液滴输运速度(10—40 cm/s)具有局限性. 本实验构造Leidenfrost传热面和撞击面, Leidenfrost传热面用于悬浮液滴并为其提供足够的能量, 当Leidenfrsot液滴(燃料)与撞击面(点火器)接触时, 粗糙环的大量微/纳米腔不仅会向液滴产生额外的辐射热量, 而且还会提供成核点以在约10 ms内触发爆炸沸腾. 利用周期性爆炸沸腾产生的脉冲推力Fth实现液滴自驱动. 液滴运动初始阶段由于惯性力Fi占主导, 液滴撞击多为镜面反射, 液滴运动轨迹较为混乱, 随着液滴直径减小, 脉冲推力Fth占主导, 液滴轨迹通过Leidenfrost传热面中心. 同时液滴输运速度高达68.91 cm/s, 这是在以往微纳结构表面液滴自驱动从未实现的. 这一发现为高温下操纵液滴提供了新的思路, 有望在微流控和传热等两相系统中得到重要的应用.
    When a droplet is placed on a surface with a temperature higher than Leidenfrost temperature, it will be levitated on its own vapor cushion, which makes the droplet have amazing mobility. Generally, the vapor flow under the droplet is corrected by constructing asymmetry micro/nano textured surfaces to realize the self-propulsion of the droplet. However, the control of droplet dynamics becomes uncertain due to the complicated interaction among liquid-vapor-solid phases, and the direction of droplet motion and droplet transport velocity (10-40 cm/s) have limitations. Leidenfrost heat transfer surface and impact surface are constructed in this experiment. When the surface of Leidenfrost heat transfer for droplet levitation contacts the droplet which the sufficient energy flows towards, the rough ring surface acts as an igniter. When a warm Leidenfrsot droplet (fuel) contacts skirt ring (igniter), abundant micro/nano cavities of rough skirt ring not only generate additional radiation heat flux towards droplet but also provide nucleation sites to trigger explosive boiling on a ~10 ms time scale. The thrust force Fth generated by periodic explosive boiling realizes the self-propulsion of droplets. In the initial stage of droplet motion, the inertial force Fi is dominant, and the droplet impact is mostly specular reflection, and the droplet trajectory is chaotic. With the decrease of droplet diameter, the pulsed thrust Fth is dominant, and the droplet trajectory passes through the center of the Leidenfrost heat transfer surface. Our experimental results show that the droplet passes through the center of the Leidenfrost heat transfer surface in a wide diameter range (D = 0.671-1.576 mm). For the last (150th) collision with the rough ring, the curved trajectory exists instead of line trajectory with $ D \sim 0.105 $ mm. For a very small droplet, the drag force Fd is dominant, which prevents the droplet from continuing to move. The droplet is followed by sessile droplet evaporation until it totally disappears. At the same time, the droplet transport velocity is as high as 68.91 cm/s, which has not been realized before. The present work provides a new method to manipulate droplet motion at a high temperature. Our Leidenfrost system is simple, cost-effective and lasts long-term operation because it does not depend on complicated micro/nano fabrications, which is expected to be used in microfluidic and heat transfer two-phase systems.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51821004)和航空发动机气动热力国防科技重点实验室基金(批准号:6142702200510)资助的课题
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51821004) and the Key Laboratories for National Defense Science and Technology (Grant No. 6142702200510).
    [1]

    Leidenfrost J G 1966 Int. J. Heat Mass Transfer 9 1153Google Scholar

    [2]

    Vakarelski I U, Marston J O, Chan D Y, Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501Google Scholar

    [3]

    Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S, Dey K K, Cordova-Figueroa U, Mallouk T E, Sen A 2014 Nat. Chem. 6 415Google Scholar

    [4]

    Baylis J R, Yeon J H, Thomson M H, Kazerooni A, Wang X, John A E S, Lim E B, Chien D, Lee A, Zhang J Q 2015 Sci. Adv. 1 e1500379Google Scholar

    [5]

    Dittrich P S, Manz A 2006 Nat. Rev. Drug discovery 5 210Google Scholar

    [6]

    Chen M Y, Jia Z H, Zhang T, Fei Y Y 2018 Appl. Surf. Sci. 433 336Google Scholar

    [7]

    Chu F, Luo J, Hao C, Zhang J, Wu X, Wen D 2020 Langmuir 36 5855Google Scholar

    [8]

    王宏, 廖强, 朱恂 2007 化工学报 58 2313Google Scholar

    Wang H, Liao Q, Zhu X 2007 J. Chem. Ind. Eng. 58 2313Google Scholar

    [9]

    Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, Wang Z 2016 Nat. Phys. 12 606Google Scholar

    [10]

    Sobac B, Rednikov A, Dorbolo S, Colinet P 2017 Phys. Fluids 29 082101Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Quéré D 2013 Annu. Rev. Fluid Mech. 45 197Google Scholar

    [13]

    Scriven L, Sternling C 1960 Nature 187 186Google Scholar

    [14]

    Jia Z H, Chen M Y, Zhu H T 2017 Appl. Phys. Lett. 110 091603Google Scholar

    [15]

    Lagubeau G, Le Merrer M, Clanet C, Quéré D 2011 Nat. Phys. 7 395Google Scholar

    [16]

    Wang B, Xu J L, Zhang W, Li Y X 2011 Sens. Actuators, A 169 194Google Scholar

    [17]

    Xu J, Zhang W 2008 Int. J. Heat Mass Transfer 51 389Google Scholar

    [18]

    Lyu S, Mathai V, Wang Y, Sobac B, Colinet P, Lohse D, Sun C 2019 Sci. Adv. 5 eaav8081Google Scholar

    [19]

    Ok J T, Lopez-Oña E, Nikitopoulos D E, Wong H, Park S 2010 Microfluid. Nanofluid. 10 1045

    [20]

    Grounds A, Still R, Takashina K 2012 Sci. Rep. 2 720Google Scholar

    [21]

    Shahriari A, Wilson P S, Bahadur V 2018 Phys. Rev. E 98 013103Google Scholar

    [22]

    Cole R 1974 Adv. Heat Transfer 10 85Google Scholar

    [23]

    Kandlikar S G 2004 J. Heat Transfer 126 8Google Scholar

    [24]

    Kandlikar S G 2020 J. Heat Transfer 142 100801Google Scholar

    [25]

    Zhu B, Xu J, Yan C, Xie J 2020 Int. J. Heat Mass Transfer 148 119080

    [26]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 69 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 69 064401Google Scholar

    [27]

    Shati A K A, Blakey S G, Beck S B M 2011 Energy Build. 43 400Google Scholar

    [28]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [29]

    Ishii M, Zuber N 1979 AIChE J. 25 843Google Scholar

  • 图 1  爆炸沸腾触发液滴自驱动的新方法

    Fig. 1.  A new method of explosive boiling to trigger the self-propulsion of droplet.

    图 2  (a)实验装置图. 1, 紫铜环; 2, 黄铜加热块; 3, 加热棒; 4, 不锈钢底座; 5, 调压器; 6, 继电器; 7, PID温控仪; 8, K型热电偶; 9, 麦克风; 10, 高速数据采集仪(ScopeCorder DL750); 11, 同步器(MotionPro Timing Hub); 12, 高速相机(MotionPro Y4, IDT); 13, 微注射泵(RSP01-BDG); 14, 安捷伦34970A. (b) 黄铜加热块和紫铜环尺寸 (单位: mm)

    Fig. 2.  (a) Experimental setup. 1, copper skirt ring; 2, brass heating block; 3, cartridge heater; 4, stainless steel base; 5, voltage transformer; 6, electric relay; 7, PID temperature controller; 8, K thermocouple; 9, microphone; 10, high speed data acquisition system (ScopeCorder DL750; 11, synchronizer (MotionPro Timing Hub); 12, high speed camera (MotionPro Y4, IDT); 13, micro-syringe pump (RSP01-BDG); 14, Agilent 34970A. (b) Brass heating block and copper ring size (all dimensions are in mm).

    图 3  采用与两个圆环样品相同的制造技术制备的两个平表面的表征 (a)抛光紫铜表面的扫描电子显微镜图像和接触角; (b)粗糙紫铜表面的扫描电子显微镜图像和接触角; (c), (d)抛光紫铜表面的表面形貌测量; (e), (f) 粗糙紫铜表面的表面形貌测量

    Fig. 3.  Characterization of two flat surfaces having the same fabrication technique as two skirt ring samples: (a) Scanning electronic microscope (ESEM) image and contact angles for polished copper surface; (b) ESME image and contact angles for rough copper surface; (c), (d) surface morphology measured for smooth copper surface; (e), (f) surface morphology measured for rough copper surface

    图 4  液滴整个寿命周期内液滴运动轨迹 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 液滴在粗糙环的运动轨迹; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 液滴在抛光环的运动轨迹; (c)在Tw = 304.5 ℃, Tr = 256.3 ℃下, 液滴在粗糙环的运动轨迹

    Fig. 4.  Droplet trajectory during the whole droplet lifetime: (a) Droplet trajectory on rough ring at Tw = 223.0 ℃, Tr = 191.4 ℃; (b) droplet trajectory on polished ring at Tw = 223.0 ℃, Tr = 191.4 ℃; (c) droplet trajectory on rough ring at Tw = 304.5 ℃, Tr = 256.3 ℃.

    图 5  液滴整个寿命周期内液滴撞击频率 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环

    Fig. 5.  Droplet collision frequency during the whole droplet lifetime: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring.

    图 7  液滴整个寿命周期内液滴的声音信号 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环

    Fig. 7.  Droplet sound voltage during the whole droplet lifetime: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring.

    图 6  液滴整个寿命周期内液滴运动速度 (a) 在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环

    Fig. 6.  Droplet traveling velocity during the whole droplet lifetime: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring.

    图 8  液滴撞击瞬间 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环; (d)液滴内汽泡运动机理

    Fig. 8.  Droplet impact moment: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring; (d) movement mechanism of bubble in droplets.

    图 9  爆炸沸腾触发液滴自驱动机理 (a)液滴自驱动机理; (b)蒸发动量力(即推力Fth)示意图

    Fig. 9.  Self-propulsion mechanism of droplet triggered by explosive boiling: (a) Self-propulsion mechanism of droplet; (b) schematic diagram of evaporative momentum force (thrust force Fth).

    Baidu
  • [1]

    Leidenfrost J G 1966 Int. J. Heat Mass Transfer 9 1153Google Scholar

    [2]

    Vakarelski I U, Marston J O, Chan D Y, Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501Google Scholar

    [3]

    Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S, Dey K K, Cordova-Figueroa U, Mallouk T E, Sen A 2014 Nat. Chem. 6 415Google Scholar

    [4]

    Baylis J R, Yeon J H, Thomson M H, Kazerooni A, Wang X, John A E S, Lim E B, Chien D, Lee A, Zhang J Q 2015 Sci. Adv. 1 e1500379Google Scholar

    [5]

    Dittrich P S, Manz A 2006 Nat. Rev. Drug discovery 5 210Google Scholar

    [6]

    Chen M Y, Jia Z H, Zhang T, Fei Y Y 2018 Appl. Surf. Sci. 433 336Google Scholar

    [7]

    Chu F, Luo J, Hao C, Zhang J, Wu X, Wen D 2020 Langmuir 36 5855Google Scholar

    [8]

    王宏, 廖强, 朱恂 2007 化工学报 58 2313Google Scholar

    Wang H, Liao Q, Zhu X 2007 J. Chem. Ind. Eng. 58 2313Google Scholar

    [9]

    Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, Wang Z 2016 Nat. Phys. 12 606Google Scholar

    [10]

    Sobac B, Rednikov A, Dorbolo S, Colinet P 2017 Phys. Fluids 29 082101Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Quéré D 2013 Annu. Rev. Fluid Mech. 45 197Google Scholar

    [13]

    Scriven L, Sternling C 1960 Nature 187 186Google Scholar

    [14]

    Jia Z H, Chen M Y, Zhu H T 2017 Appl. Phys. Lett. 110 091603Google Scholar

    [15]

    Lagubeau G, Le Merrer M, Clanet C, Quéré D 2011 Nat. Phys. 7 395Google Scholar

    [16]

    Wang B, Xu J L, Zhang W, Li Y X 2011 Sens. Actuators, A 169 194Google Scholar

    [17]

    Xu J, Zhang W 2008 Int. J. Heat Mass Transfer 51 389Google Scholar

    [18]

    Lyu S, Mathai V, Wang Y, Sobac B, Colinet P, Lohse D, Sun C 2019 Sci. Adv. 5 eaav8081Google Scholar

    [19]

    Ok J T, Lopez-Oña E, Nikitopoulos D E, Wong H, Park S 2010 Microfluid. Nanofluid. 10 1045

    [20]

    Grounds A, Still R, Takashina K 2012 Sci. Rep. 2 720Google Scholar

    [21]

    Shahriari A, Wilson P S, Bahadur V 2018 Phys. Rev. E 98 013103Google Scholar

    [22]

    Cole R 1974 Adv. Heat Transfer 10 85Google Scholar

    [23]

    Kandlikar S G 2004 J. Heat Transfer 126 8Google Scholar

    [24]

    Kandlikar S G 2020 J. Heat Transfer 142 100801Google Scholar

    [25]

    Zhu B, Xu J, Yan C, Xie J 2020 Int. J. Heat Mass Transfer 148 119080

    [26]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 69 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 69 064401Google Scholar

    [27]

    Shati A K A, Blakey S G, Beck S B M 2011 Energy Build. 43 400Google Scholar

    [28]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [29]

    Ishii M, Zuber N 1979 AIChE J. 25 843Google Scholar

  • [1] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟.  , 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [2] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究.  , 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [4] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成.  , 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [5] 王浩, 徐进良. 油面上相邻Leidenfrost液滴的相互作用及运动机制.  , 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [6] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [7] 林泽鹏, 徐圣卓, 包芸. 隔板对流系统的热流特性及热量输入与传递特性.  , 2020, 69(1): 014401. doi: 10.7498/aps.69.20191193
    [8] 赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪. 液氮滴撞击壁面相变行为的数值研究.  , 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [9] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟.  , 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [10] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [12] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟.  , 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [13] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟.  , 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [14] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟.  , 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [15] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真.  , 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [16] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [17] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟.  , 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [18] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [19] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟.  , 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [20] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟.  , 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
计量
  • 文章访问数:  5415
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-08-17
  • 上网日期:  2021-08-25
  • 刊出日期:  2021-12-20

/

返回文章
返回
Baidu
map